Last updated 12/12/24

- Static Timing Analysis
 - With hundreds of inputs, millions of registers, and billions of possible states – transient timing analysis of digital circuits is practically impossible
 - Only need to determine if every register transfer can happen within a clock cycle

- Static Timing Analysis
 - Only need to determine if every register transfer can happen within a clock cycle
 - Check each register transfer path
 - Estimate delays based on best-case and worst-case assumptions
 - No specific input values are used
 - Logical operation IS NOT checked
 - Test for setup and hold violations
 - Create a timing analysis report

- Static Timing Analysis
 - RTL Static Timing Analysis Path
 - Input of source FlipFlop to Input of destination FlipFlop

How many static timing paths ?

CLK

© tj

- Static Timing Analysis
 - RTL Static Timing Analysis Path
 - Input of source FlipFlop to Input of destination FlipFlop

- Static Timing Analysis
 - Complex Static Timing Analysis Path
 - Input of source FlipFlop to Input of destination FlipFlop
 - Input and Output paths

How many static timing paths ?

© tj

- Static Timing Analysis
 - Complex Static Timing Analysis Path
 - Input of source FlipFlop to Input of destination FlipFlop
 - Input and Output paths

- Static Timing Analysis
 - Typical Report
 - Best-case and worst-case analysis
 - Setup time violations
 - Hold time violations
 - Reports the timing Slack
 - Slack: The gap between estimated time and time to create a violation
 - Setup Slack = Required Arrival Time (RAT) Actual Arrival Time (AAT)
 - Hold Slack = Actual Arrival Time (AAT) Required Arrival Time (RAT)
 - Positive Slack: The amount of time the design has to spare before failing to meet a requirement
 - Zero Slack: The design just barely meets the requirement
 - Negative Slack: The amount of time the design exceeds the requirement and fails