Last updated 10/3/24

These slides introduce signals

- Signal
 - Information transported or conveyed using an agreed upon medium
 - Visual

• Audio

• Tactile

CPE 1500

- Electronic Signal Medium
 - Wires
 - Individual wires
 - Ribbon cables
 - Traces on a PC Board or an Integrated Circuit
 - Coaxial cables
 - Fiber Optics

- Radio
 - AM/FM/BT/WiFi/RADAR/GPS/...

- Electronic Signal Carrier
 - The most common signal carriers in wired systems are voltage and current

Voltage

- Electric potential potential energy of a charge in an electric field
- Measured in volts (V)

• Current

- Flow of electric charge
- Measured in amps (A)

If the carrier signals are DC – we use capital V, A If the carrier signals are AC or Transient – we use small v, a

- Electronic Signal Format
 - Electronic signals can be broken into one of 4 categories

- DC signals are a special case of continuous time signals
 - They have values for all points in time they just don't change

- Digital Signals CPE 1500
 - In CPE 1500 we will be working with Continuous Time Digital Signals
 - Ideal Signal
 - 2 values
 - No transition time
 - Actual Signal
 - Analog values
 - Finite transition times

Time

In most cases we will treat our digital signals as a hybrid of these two views

2 values

with finite transition times

- Signal Abstraction
 - There are multiple representations of the same signal

Signal Terms

This edge occurred in time before that edge

- Aperiodic Signals
 - No fixed repetition
 - e.g. Intermittent transitions

- Periodic Signals
 - Fixed repetition cycle
 - Frequency = 1/Period

T (period)

time

F (frequency) = 1/T

50MHz $\leftarrow \rightarrow$ 20ns

- Periodic Signals
 - Fixed repetition cycle
 - Duty Cycle = (Time_{High} / Period) %

Duty Cycle = (Time_{High} / T) %

High = 10ns, Low = 40ns \rightarrow 25% Duty Cycle