Last updated 10/3/24

These slides introduce unsigned binary numbers

- Unsigned Binary
 - Binary representation for numbers that are ALWAYS positive
 - Memory addresses
 - Counters
 - Populations
 - Often just called "binary"
 - Characterized by n-bits
 - E.g. Use a 16 bit unsigned binary number

© tj

- Bit Values
 - All *n* bits used to represent the magnitude of the value
 - No negative values

4	\rightarrow	00000100
32	\rightarrow	00100000
16	\rightarrow	00010000

© tj

- Convert Unsigned Binary to Decimal
 - Process: identify the bits that are set to 1, multiply by the corresponding bit value, and sum them all together

convert 1010 unsigned binary to decimal $1010 \rightarrow$ bit values: 8, 2 $\rightarrow 10$

convert 11001 unsigned binary to decimal11001 \rightarrow bit values: 16, 8, 1 \rightarrow 25

convert 1010101 unsigned binary to decimal 1010101 \rightarrow bit values: 64, 16, 4, 1 \rightarrow 85

© ti

- Convert Unsigned Binary to Decimal cont'd
 - Process: identify the bits that are set to 1, multiply by the corresponding bit value, and sum them all together

convert 1010.01 unsigned binary to decimal $1010.01 \rightarrow$ bit values: 8, 2, $\frac{1}{4}$ \rightarrow 10.25

 convert 11001.101 unsigned binary to decimal

 11001.101 → bit values: 16, 8, 1, ½, 1/8

convert 1010101.11 unsigned binary to decimal
 1010101.11 → bit values: 64, 16, 4, 1, ½, ¼ → 85.75

© ti

- Convert Decimal to Unsigned Binary
 - Process:
 - 1. Find the largest binary bit value that fits into the decimal number
 - 2. Write a 1
 - 3. Subtract that value from the decimal number and write down the remainder
 - 4. Check the next smallest binary bit value
 - If it fits in the remainder, write a 1
 Subtract that value from the decimal number and write down the remainder Repeat step 4
 - If it does not fit in the remainder, write a 0 Repeat step 4

convert 50 decimal to unsigned binary

32 is the largest bit value that fits in 50						
decimal value	50	18	2	2	2	0
bit value	1 (32)	1 (16)	0 (8)	0 (4)	1 (2)	0(1)
remainder	18	2	2	2	2	2
Unsigned binary	number	110010				

- Convert Decimal to Unsigned Binary, cont'd
 - Process:
 - 1. Find the largest binary bit value that fits into the decimal number
 - 2. Write a 1
 - 3. Subtract that value from the decimal number and write down the remainder
 - 4. Check the next smallest binary bit value
 - If it fits in the remainder, write a 1
 Subtract that value from the decimal number and write down the remainder Repeat step 4
 - If it does not fit in the remainder, write a 0 Repeat step 4

convert 88 decimal to unsigned binary

64 is the largest	bit value	that fits ir	n 89				
decimal value	89	25	25	9	1	1	1
bit value	1 (64)	0 (32)	1 (16)	1 (8)	0 (4)	0 (2)	1(1)
remainder	225	25	9	1	1	1	0
Unsigned binary	number	1011001					

© ti

- Convert Decimal to Unsigned Binary, cont'd
 - Process:
 - 1. Find the largest binary bit value that fits into the decimal number
 - 2. Write a 1
 - 3. Subtract that value from the decimal number and write down the remainder
 - 4. Check the next smallest binary bit value
 - If it fits in the remainder, write a 1
 Subtract that value from the decimal number and write down the remainder
 Repeat step 4
 - If it does not fit in the remainder, write a 0 Repeat step 4

convert 19.825 decimal to unsigned binary

16 is the largest bit value that fits in 19.825								
dec value	19.825	3.825	3.825	3.825	0.825	0.825	0.325	.125
bit value	1 (16)	<mark>0</mark> (8)	<mark>0</mark> (4)	1 (2)	1 (1) •	1 (.5)	1 (.25)	1 (0.125)1/8
remainder	3.825	3.825	3.825	1.825	0.825	.325	0.125	0

Unsigned binary number 10

10011.111

- Convert Decimal to fixed size Unsigned Binary
 - Process:
 - 1. Find the largest binary bit value for the fixed sized unsigned binary number
 - If it fits in the remainder, write a 1 Subtract that value from the decimal number and write down the remainder
 - If it does not fit in the remainder, write a 0
 - 2. Check the next smallest binary bit value
 - If it fits in the remainder, write a 1
 Subtract that value from the decimal number and write down the remainder Repeat step 4
 - If it does not fit in the remainder, write a 0 Repeat step 4

128 is the largest bit value for an 8 bit unsigned binary value

decimal value	50	50	50	18	2	2	2	0
bit value	0 (128)	<mark>0</mark> (64)	1 (32)	1 (16)	0 (8)	0 (4)	1 (2)	0 (1)
remainder	50	50	18	2	2	2	2	

00110010

Unsigned 8bit binary number

Word Length Extension

 When extending to larger word sizes, add 0s to the left of the previous MSB

4 bit	8 bit	16 bit
0110	→ 00000110	→ 000000000000110
1001	→ 00001001	→ 000000000001001

- Limits
 - Maximum values: (non fractional)
 - 4 bits (1111) = 15
 - 8 bits (1111 1111) = 255
 - 16 bits (1111 1111 1111 1111) = 65,535

• Wait! 4 bits \rightarrow 2⁴ = 16, why is the maximum value 15

8 bits \rightarrow 2⁸ = 256, why is the maximum value 255

- Number Lines
 - Fixed size limitations on binary numbers causes the number line to wrap around

