
Last updated 1/1/25

- The VHDL architecture is the description of the block's functionality
 - Type
 - Identifies the kind of architecture described
 - User defined: Common types:
 - behavioral
 - structural
 - testbench
 - Declarations
 - Internal signal declarations
 - Included hierarchical block descriptions
 - Functional Description
 - Logic operations
 - Instantiated blocks with connections

Format - Block

Format - Declarations

```
-- Architecture definition
architecture behavioral of block_name is
signal sig_name1 std_logic; declare any internal signals
signal sig_name2 std_logic_vector(7 downto 0);
```

```
component component_name is
```

generic(...

```
port(...
);
end component;
```

begin

```
end architecture;
```

component description for any structural elements – matches the entity for that component

Format – Definitions / Instantiations

```
-- Architecture definition
architecture behavioral of block_name is
begin
    sigZ <= sigX OR sigY;
    sigC \le sigA when sigD = '0' else
                                              behavioral / logic descriptions
            sigB when sigD = (1');
    inst_0: component_name
       generic map( ...
                                    instantiation of any structural blocks
       port map(...
                 );
end architecture;
```

Example

Declarations

architecture logic of oddeven_16bit_logic_structural is

-- internal signals signal sig_15_12: std_logic; signal sig_11_8: std_logic; signal sig_7_4: std_logic; signal sig_3_0: std_logic; component oddeven_4bit_logic is port(i_a: in std_logic; i_b: in std_logic; i_c: in std_logic; i_d: in std_logic; o_oddeven_out: out std_logic);

end component;

Definitions / Instantiations

begin oe_1512: oddeven_4bit_logic port map(i_a => i_in(15), i_b => i_in(14), => i_in(13), i_c i_d => i_in(12), o_oddeven_out => sig_15_12); oe_1108: oddeven_4bit_logic => i_in(11), port map(i_a i_b $=> i_i(10),$ => i_in(9), i_c i_d $=> i_i(8)$, o_oddeven_out => sig_11_8); oe_0704: oddeven_4bit_logic port map(i_a => i_in(7), i_b $=> i_{i_{(6)}}$ => i_in(5), i_c => i_in(4), id o_oddeven_out => sig_7_4); oe_0300: oddeven_4bit_logic port map($=> i_i(3),$ i_a i_b $=> i_i(2),$ => i_in(1), i_c i_d $=> i_i(0),$ o_oddeven_out => sig_3_0): oe_final: oddeven_4bit_logic port map(i_a => NOT sig_15_12, => NOT sig_11_8, i_b \Rightarrow NOT sig_7_4, i_c i_d => NOT sig_3_0, o_oddeven_out => o_oddeven_out); end architecture;

6