Last updated 1/21/25

CPE 1500

 Best Practices ???

* Best practices are often defined by company, toolset or
device

* In our case — Dr. Johnson is setting the “best practices”

* These rules are for Class/Lab purposes. Industry best
practices would include a much more extensive list
* |/O synchronization

Clock domains

Revision control

Test coverage

 These rules have been reduced from the ELE3510 rules

2 © tj

e Use meaningful names for blocks, signhals and
programs

e Use i xyz for block input signal names and o xyz
for block output signal names

 Use tb and del0 name extensions for
testbenches and hardware implementations

e 1 design file, instantiate it in the testbench and
hardware implementation files

* No latches

* Use explicit port mapping when instantiating
components

e No sighal initialization in declarations

CPE 1500 3 ©tj

e No variables as signals

* |/O signals are SLV, internal signals are
signed/unsigned as appropriate

e Use rising edge()

e Reset bar for general (control) synchronous logic

* Clock divider OK for slowing to human speeds

* Break FSM designs into separate Next State,
Register, and Output Logic(Mealy) sections

CPE 1500 4 ©tj

e Use meaningful names for blocks, signals and
programs

Stoplight with emergency detection for lab 22

=

oy

@\mh |

\@\am%vh/q/l / |

Note: primary function followed by
secondary functions

stop
stop
stop

CPE 1500

Nt w_emergency.vhdl
Nt w_emergency_tb.vhdl

Nt w_emergency_del0.vhdl

5 © tj

CPE 1500

e Use i_xyz for block input names and o_xyz for block
output names

port(i_A: in std_logic_vector(3 downto 0);
i B: in std_logic_vector(3 downto 0);
i_CIN: in std_logic;

o SUM: out std_logic_vector(3 downto 0);
o COUT: out std_logic

);

Exception: When using the pin-names from the QSF
file for DE10 implementations, the names must

match exactly [eniyioaceiois

port(
CLOCK 50: in std_logic;
SW: in std_logic_vector(9 downto 0);
HEXO: out std_logic_vector(7 downto 0);
HEX1: out std_logic_vector(7 downto 0);
HEX2: out std_logic_vector(7 downto 0);
HEX3: out std_logic_vector(7 downto 0)

);

end entity;

* 1 design file, instantiate it in the testbench and HW

implementation files

My_Block_tb.vhdl
Test
Inputs
My_Block.vhdl
instantiation
Output
Checks
My_Block.vhdl
My_Block_del0.vhdl
NO Changes to the deSign switches
My_Block.vhdl LEDs
instantiation
SSEG

CPE 1500 7 ©tj

0
[it]
nnll -

Type

[i]

CPE 1500

* No Latches

library ieee;
use ieee.std_logic_1164.all;

entity latches is
port(
i_clk: instd_logic;
i_d: instd_logic;
/
0 q: out st/i_logic/
); ‘/ ‘/’s
end entity Iatchesj
| \‘
architecture behaLioraI d‘\f latches is

begin \ \

process(i_clk, i_d{ \

begin \
if(i_clk="1") ther\\
o q<=i_d;
end if;

end process;
end architecture;

ID Message

10631 VHDL Process Statement warning at latches.vhd

=

10041 Inferred Tatch for "q" at 'Iatches.*.-hc]'l\(\,lﬁj

i_clk

o_g$latc

\

DATAIN
LATCH_ENABLE
ACLR

ouTo

1¢ 2\6} Tinferring Tatch(es) for-sign al or variab 1

/

q", which holds its previous value in one or

~

W

~

© tj

e Always use explicit port mapping on component

Instantiation

library ieee;
use ieee.std_logic_1164.all;

entity dff_instantiation is

port (
CLOCK_50: in std_logic;
SW in std_logic_vector(1 downto 0);
LEDR : out std_logic_vector(0 downto 0)
&
end entity;
d ffreg O
.
1 i D
SWI[1..0] | > r =
CLOCK 50 > _clk
I 0 i_rstbf
CPE 1500

%% ™ LEDR[0.0]

port map ~_|

component d_ff

end component;

begin
reg_0:d_ff

i_clk
o_Q
);

end architecture;

port(
i_D: instd_logic;
i_clk: instd_logic;
i_rstb: instd_logic;
o _Q: outstd logic
);

\Aport map(i_D =>SW(1),

i_rstb =>SW(0),

architecture structural of dff_instantiation is ‘

component prototype

explicit port mapping

component pin => my signal

/
=> CLOCK_50,

=> LEDR(0)

© tj

* No signal initialization in declarations

* It is not possible to implement signal initialization in
hardware

* Rely on reset for any required initialization in hardware

signal foo: std_logic :£1

begin

end process;

x == Too;

signal foo: std_Togic := "17;
-- sections to show initialization fails
Ern;ess(i_c1k}
egin
if(rising_edge(i_clk)) then
foo <= '07;
y <= '1%;
end 'i'|=; X:foo

L

Sim says it works
HW fails !!!

— > x

—1L vy

Sim shows x (foo) starts at ‘1’

Hardware has nothing to make x (foo)
startat1

© tj

* No variables as signals
* We are using HDL code to represent HARDWARE
e Variables do not have a HARDWARE analog

e Variables are treated differently than signals
e Variables are updated immediately in a process
» Signals are only updated at the end of a process

* Variable are appropriate for compile time calculations
* Generate
* Test Benches

CPE 1500 11 © tj

CPE 1500

* |/O signals are SLV, internal signals are
signed/unsigned as appropriate
* We are using HDL code to represent HARDWARE

* |/O ports are represented by std logic or std logic_vectors
* They are interpreted as connections

* Internal signals
e Use std logic to represent single wires

e Use unsigned to represent unsigned bus signals and structural
buses (memory addresses, ...)

* Use signed to represent signed bus signals

12

© tj

e Use Rising_Edge()
e (rising_edge(clk)) instead of (clk’'event and clk = “1’) in
register (FF designs)
 Also use (falling_edge(clk))

* These do better multi-state checking in simulation

process(i_clk, i_rstb)

clk’event includes things like begin
751 if (i_rstb ='0') then
o Q<="0%
U->1 elsif (rising_edge(i_clk)) then
o Q<=i_D;

end if;
end process;

rising_edge only includes 0 2> 1

CPE 1500 13

© tj

e Reset_bar for general (control) synchronous logic
* All non-data path registers will have a rstb signal

library ieee;
use ieee.std_logic_1164.all;

entity d_ffis
port (
i_clk:instd_logic;
i_rstb:in std_logic;
i D: in std_logic;

o Q: out std_logic
)
end entity;

architecture behavioral of d_ff is
begin
process(i_clk, i_rstb)
begin
if (i_rstb ='0') then
o Q<="0}
elsif (rising_edge(i_clk)) then
o Q<=i D;
end if;
end process;
end behavioral;

CPE 1500

14

library ieee;
use ieee.std_logic_1164.all;

entity registers is
generic(
N: integer :=8
);
port (
i_clk: instd_logic;
i_rstb: in std_logic;
i D: in std_logic_vector((N - 1) downto 0);

o Q: out std_logic_vector((N - 1) downto 0)
);
end entity;

architecture behavioral of registers is
begin
process(i_clk, i_rstb)
begin
if (i_rstb ='0') then
o_Q <= (others =>'0");
elsif (rising_edge(i_clk)) then
o Q<=i_D;
end if;
end process;
end behavioral;

© tj

	Slide 1: VHDL Best Practices – CPE1500
	Slide 2: VHDL Best Practices – CPE1500
	Slide 3: VHDL Best Practices – page 1/2
	Slide 4: VHDL Best Practices – page 2/2
	Slide 5: Use meaningful names …
	Slide 6: Use i_xyz …
	Slide 7: 1 design file, instantiate …
	Slide 8: No Latches
	Slide 9: Use Explicit Port Mapping
	Slide 10: No Signal Initialization
	Slide 11: No Variables as Signals
	Slide 12: I/O signals are …
	Slide 13: Use Rising_Edge()
	Slide 14: Reset_bar for general …

