Last updated 1/22/25




e Register File
* A register file is a collection of registers treated as a single

entity

e Commonly used in CPUs (e.g. RA, RB, ...)

Reg 0

Reg 1

Reg 2

Reg 3

Reg 4

Reg 5

Reg 6

Reg 7

CPE 1500

data_out

reg_selA
reg selB
reg_selC
reg_selD

wr_sel
data_in

Reg O

Reg 1

Reg 2

Reg 3

Reg 4

Reg 5

Reg 6

w_en_b
clk

Reg 7

data_outA

data_outB

data_outC
data_outD

© tj



 Register File — 8, 16bit registers — 1 in/out

-- regf11e_16x8xl

-- 8 - 16 bit teg1sters
- single input/output

-- created by johnsontimoj
5/7/18

-- Inputs: clk, reg_sel, we_bar, data_in
-- Outputs: data_out

-- note - reg files do not have a reset

Tibrary ieee;
use jeee,std_logic_1164,all;

entity regfile_16x8x1 is
port (

j_c1k : 1n std_logic;

i_reg_sel : in std_logic_vector {2 downto 0);
i_data_in : in std_logic_vector (15 downto 0);
i_we_b: in std_logic;

o_data_out: out std_logic_vector (15 downto 0)

;
end entity;

There are more efficient ways to
code this — using an array

CPE 1500

architecture behavioral of regfile_16x8x1 is
-- register signals
signal reg_0: std_Togic_v
signal reg_1: std_Tlogic
signal reg_2: std_logic_
signal reg_3%: std_logic_
signal reg_4: std_logic_
signal reg_5: std_logic_v
signal reg_6: std_logic_vector(
signal reg_7: std_logic_vector(

15 downto 0);
15 downto 0);
15 downto 0);
(15 downto 0);
15 downto 0);
15 downto 0);
15 downto 0);
15 downto 0);

begin

-- register creation and write logic

Erocess(i_c1k)

egin

if(rising_ edue(1 c1k)) then
if(i_we_b = '0") then

case(i reg se1) is

when oo" > reg_0 <= i_data_im;

when “001” => reg_l <= i_data_im;
when "010" => reg_2 <= i_data_inm;
when "011" => reg_3 <= i_data_in;
when "100" => reg_4 <= i_data_in;
when "101" => reg_5 <= i_data_in;
when "110" => reg_6 <= i_data_in;
when "111" => reg_7 <= i_data_in;
when others => reg_0 <= i_data_in; -- arbitrary
end case;
end if;
end if;
end process;
-- output logic
Erocess(a11}
egin
case(i_ reg 591) is
when "000" =»> o_data_out <= reg_0;

when ”OOL” => o_data_out <= reg_l;
when "010" =» o_data_out <= reg_2;
when "011" =» o_data_out <= reg_3;
when "100" =» o_data_out <= reg_4;
when "101" =» o_data_out <= reg_5;

when "110" =» o_data_out <= reg_§;

when "111" =»> o_data_out <= reg_7;

when others => o_data_out <= reg_0; -- arbitrary
end case;

end process;

end behavioral;

3

© tj



* Register File — 8, 16bit registers — 4 outputs

-- regfile_16x8x4
-- 8 - 16 bit registers
-- 4 [dnput/output

-- created by johnsontimoj
&

-- Inputs: clk, reg_sel, wr_sel, we_bar, data_in
-- Outputs: data_out a, b, c,
-- note - reg files do not have a reset

Tibrary ieee;
use ieee.std_logic_1164.all;

entity regfile_L16x8x4 is
port

i_clk : in std_logic;

i_reg_sela : in std_logic_ downto 0);
i_reg_sels : in std_logic_ downto 0};
i_reg_selC : in std_logic_ downto 0);
i_reg_selD : in std_logic_ downto 0);
i_wr_sel : in std_logic_ downto 0);
i_data_in : in std_logic_vector (15 downto 0);
i_we_b: in std_logic;

o_data_outa: out std_logic_vector (15 downto 0);
o_data_outB: out std_logic ctor (15 downto 0O);
o_data_outcC: out std_logic ctor (15 downto 0);
o_data_outD: out std_logic_vector (15 downto 0)

H
end entity;

architecture behavioral of regfile_16x8x4 is

-- register signals

signal reg_0: std_ 1nu1c vector{15 downto 0);
signal reg_1 . _;ectmr(LE downto 0);
signal reg_2 _vector (15 downto 0);
signal reg_3 _vector(l5 downto 0);
signal reg_4 vector {15 downto 0);
signal reg_5 rector (15 downto 0);
signal reg_6 vector{15 downto 0);
signal reg_7: vector (15 downto 0);

begin

-- write and register creation logic

Erucess(1 _c1k)

egin
if(rising_ edue(1 c1k)) then
Af(i_we_b = '0") then
case(i_wr_sel) is
when "000" => reg_0 <= i_data_in;
when "001L" => reg_l _data_in;
when "010" => reg_2 _data_in;
when "011" => reg_3 _data_in;
when "100" => reg_4 _data_in;
when "101" => reg_5 _data_in;
when "110" => reg_6 _data_in;
when "111" =»> reg_7 _data_in;
when others => reg_0 <= i_data_in;
end case;
end if;
end if;

end process;

-- arbitrary

There are more efficient ways to
code this — using an array

CPE 1500

-- output logic

Egocess(a11)
egin

when

end process;

End behavioral;

case(i_l reg seTA) is
oo"

=>

when ”001" =
when "010" =
when "011" =
when "100" =»
when "101" =
when "110" =
when "111" =
when others =
end case;

case(i_ reg selB) is
oo"

when =>
when ”001" ==
when "010" =
when "011" ==
when "100" =
when "101" =
when "110" =»
when "111" =
when others =»
end case;

when =>
when ”OOL" =
when "010" =
when "011" =
when " vo=
when "101" ==
when "110" =»
when "111" =
when others =»
end case;

case(1 reg selD
when =
when ”001" =
when "010" =
when "011" =»
when "100" =
when "101" =
when "110" =
when "111" =
when others =»
end case;

o_data_outa
o_data_outa
o_data_outa
o_data_outa
o_data_outa
o_data_outA
o_data_outa
o_data_outa
o_data_outA

o_data_outs
o_data_oute
o_data_outB
o_data_outs
o_data_outs
o_data_outB
o_data_outs
o_data_outs
o_data_outB

case(1 reg selc) is

o_data_outC
o_data_outc
o_data_outc
o_data_outC
o_data_outc
o_data_outc
o_data_outC
o_data_outC
o_data_outc

) s

o_data_outD
o_data_outD
o_data_outD
o_data_outD
o_data_outD
o_data_outD
o_data_outpD
o_data_outD
o_data_outD

<=
<=
<=
<=
<=
<=
<=
<=
<=

<=
<=
<=
<=
<=
<=
<=

<=

<=
<=
<=
o
<=

<=

<=

<=
<=
<=
<=
<=
<=
<=
<=

reg_0;
reg_1;
reg_2;
reg_3;
reg_4;
reg_5;
reg_6;
reg_7;
reg_0;

reg_0;
reg_1;
reg_2;
reg_3;
reg_4;
reg_5;
reg_ 6
reg_7;
reg_0;

reg_0;
reg_1;
reg_2;
reg_3;

reg_4;

reg_S,
reg_6;
reg_7;
reg_0;

reg_0;
reg_1;
reg_2;
reg_3;
reg_4;
reg_5;
reg_6;
reg_7;
reg_0;

-- arbitrary

-- arbitrary

-- arbitrary

-- arbitrary




	Slide 1: VHDL Register Files
	Slide 2: Register Files
	Slide 3: VHDL Register Files
	Slide 4: VHDL Register Files

