Last updated 12/17/24

This is not a programming language It is a hardware description language

- VHDL elements fall into 2 categories
 - Synthesizable types that can be used to create hardware
 - Un-synthesizable types that cannot be used to create hardware
 - These exist for simulation, test and documentation
- The basic VHDL library is invoked in 2 steps

library ieee; use ieee.std_logic_1164.all;

- A VHDL signal value represents a logic value
 - There are 3 values for a VHDL signal that can be synthesized

Value	Definition	Synthesizable
'0'	Forcing 0	Y
'1'	Forcing 1	Y
'Z'	High Impedance	Y

There are 2 additional values for a VHDL signal used in simulations

Value	Definition	Synthesizable
'U'	Un-initialized	Ν
'X'	Unknown	Ν

additional values exist - but are out of the scope of this class

- A VHDL signal represents a wire
 - A single wire is identified as a std_logic signal

- A VHDL signal represents a wire
 - A bus (collection of wires) is identified as a std_logic_vector signal
 - Includes the dimension of the bus in wire order 76543210
 - Format: std_logic_vector((n-1) downto 0)

Declaration

Behavior

After a SLV signal has been declared – we refer to the entire signal by its name

- Individual wires in a bus can be identified
 - signal_name(wire number)

- Contiguous wires in a bus can be identified
 - signal_name(wire range)
 - Format: signal_name(n downto m)

- Wires and buses can be combined to create a new signal (bus) <u>name</u>
 - No new wires are created just connected to an additional name
 - Concatenation operator &

