
1SLAU575J–March 2015–Revised February 2018
Submit Documentation Feedback

Copyright © 2015–2018, Texas Instruments Incorporated

Code Composer Studio™ IDE 7.1+
for SimpleLink™ MSP432™ Microcontrollers

User's Guide
SLAU575J–March 2015–Revised February 2018

Code Composer Studio™ IDE 7.1+
for SimpleLink™ MSP432™ Microcontrollers

This manual describes the use of the TI Code Composer Studio™ IDE version 7.1 and higher with the
SimpleLink™ MSP432™ low-power microcontrollers. This manual describes only Code Composer Studio
IDE for Windows® operating systems. The versions of Code Composer Studio IDE for Linux® and OS X®

operating systems are similar and, therefore, are not described separately.

Most descriptions in this guide are valid for versions of Code Composer Studio IDE below 7.1, but the
SimpleLink software development kit (SDK) requires Code Composer Studio IDE 7.1 or higher.

Contents
1 Installing Code Composer Studio IDE .. 4
2 Updating Code Composer Studio IDE .. 4
3 Creating a Basic SimpleLink MSP432 Project ... 5
4 Importing SimpleLink Examples From TI Resource Explorer .. 7
5 Debugging Your Application.. 8

5.1 Debugger Settings .. 9
5.2 Debugging ROM Driver Library.. 12
5.3 Start Debugging Session... 13
5.4 Debugger Messages ... 14

6 Using Serial Wire Output (SWO) Hardware Trace Analyzer ... 15
6.1 Configure the Project for SWO Trace .. 15
6.2 Run Serial Wire Trace .. 16

7 EnergyTraceTM Technology ... 17
7.1 Energy Measurement ... 17
7.2 Integration With Code Composer Studio IDE.. 17
7.3 Enabling EnergyTrace Technology and Selecting the Default Mode....................................... 17
7.4 Controlling EnergyTrace Technology ... 19
7.5 EnergyTrace+ Mode .. 20
7.6 EnergyTrace Mode.. 23
7.7 Comparing Captured Data With Reference Data ... 25
7.8 EnergyTrace Technology FAQs ... 27

8 Device Security (MSP432P4xx Devices Only) .. 29
8.1 Factory Reset Without Password ... 29
8.2 Factory Reset With Password ... 33

9 Low-Power Debug (MSP432P4xx Devices Only) ... 34
10 Frequently Asked Questions.. 37
11 Additional Code Composer Studio IDE Information ... 38
12 References .. 39

List of Figures

1 Check for Updates... 4
2 Creating a New Code Composer Studio IDE Project ... 5
3 New Project Wizard ... 6
4 New Project Files .. 6
5 New CCS Project, Open Resource Explorer... 7
6 Selecting an Example in TI Resource Explorer.. 8

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU575J

www.ti.com

2 SLAU575J–March 2015–Revised February 2018
Submit Documentation Feedback

Copyright © 2015–2018, Texas Instruments Incorporated

Code Composer Studio™ IDE 7.1+
for SimpleLink™ MSP432™ Microcontrollers

7 Project Properties.. 9
8 Choose Debugger Connection ... 10
9 Debug Settings for GNU Compiler and MSP-FET ... 11
10 Predefined Symbol for ROM Debugging .. 12
11 Launch Debug Session.. 13
12 Debug Session ... 14
13 Target Configuration ... 15
14 Connection Properties ... 16
15 Pulse Density and Current Flow.. 17
16 EnergyTraceTM Technology Preferences .. 18
17 EnergyTrace™ Technology Control Bar .. 19
18 Debug Session With EnergyTrace+ Graphs.. 20
19 Profile Window.. 20
20 States Window.. 21
21 Power Window.. 21
22 Energy Window... 22
23 Debug Session With EnergyTrace Graphs ... 23
24 EnergyTrace Profile Window ... 24
25 Zoom Into Power Window... 24
26 Current Profile (Blue) With Recorded Profile (Yellow)... 24
27 Energy Profile of the Same Program in Resume (Yellow Line) and Free Run (Green Line) 25
28 Comparing Profiles in EnergyTrace+ Mode .. 26
29 Comparing Profiles in EnergyTrace Mode .. 26
30 Show Target Configuration View... 29
31 List of Target Configurations.. 30
32 Launch Selected Target Configuration .. 30
33 Debug View After Launching Target Configuration .. 30
34 Show All Cores ... 31
35 List of All Cores in the MSP432P4xx ... 31
36 Manually Connecting to the DAP .. 32
37 DAP is Connected.. 32
38 Executing the Factory Reset Script .. 32
39 Mass Erase Script Console Output .. 33
40 Code Composer Studio IDE Tools – GEL File ... 33
41 Factory Reset With Password GEL File... 34
42 Properties Menu .. 35
43 Enabling Low Power Run ... 36
44 CPU Core Status Display Indicating Deep Sleep Mode .. 36
45 Program Counter Located at WFI Instruction .. 37
46 Change Debugger Settings to SWD ... 37

Trademarks
Code Composer Studio, SimpleLink, MSP432, E2E, LaunchPad are trademarks of Texas Instruments.
OS X is a registered trademark of Apple Inc.
CoreSight is a trademark of Arm Limited.
Arm is a registered trademark of Arm Limited.
IAR Embedded Workbench is a registered trademark of IAR Systems.
Linux is a registered trademark of Linus Torvalds.
Windows is a registered trademark of Microsoft Corporation.
All other trademarks are the property of their respective owners.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU575J

www.ti.com

3SLAU575J–March 2015–Revised February 2018
Submit Documentation Feedback

Copyright © 2015–2018, Texas Instruments Incorporated

Code Composer Studio™ IDE 7.1+
for SimpleLink™ MSP432™ Microcontrollers

Preface: Read This First

How to Use This Manual
This manual describes only those Code Composer Studio IDE features that are specific to the SimpleLink
MSP432 low-power microcontrollers. It does not fully describe the MSP432 microcontrollers or the
complete development software and hardware systems. For details on these items, see the appropriate TI
documents listed in Important MSP432 Documents on the Web.

Important Documents on the Web
The primary sources of information about MSP432 microcontrollers are the device-specific data sheets
and the technical reference manual. The MSP432 website contains the most recent version of these
documents.

Documents that describe the Code Composer Studio tools (Code Composer Studio IDE, assembler, C
compiler, linker, and librarian) can be found at www.ti.com/tool/ccstudio. A Wiki page (FAQ) that is specific
to the Code Composer Studio IDE is available at processors.wiki.ti.com/index.php/Category:CCS, and the
TI E2E™ Community support forums provide additional help.

Documentation for third party tools, such as IAR Embedded Workbench® for Arm® or the Segger J-Link
debug probe, can be found on the respective company's website.

If You Need Assistance
Support for the MSP432 devices and the hardware development tools is provided by the Texas
Instruments Product Information Center (PIC). Contact information for the PIC can be found on the TI
website. The TI E2E Community support forums for the MSP432 provide open interaction with peer
engineers, TI engineers, and other experts. Additional device-specific information can be found on the
MSP432 website.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU575J
http://www.ti.com/msp432
http://www.ti.com/tool/ccstudio
http://processors.wiki.ti.com/index.php/Category:CCS
http://e2e.ti.com
http://www.ti.com/support
http://www.ti.com/support
http://e2e.ti.com
http://www.ti.com/msp432

Installing Code Composer Studio IDE www.ti.com

4 SLAU575J–March 2015–Revised February 2018
Submit Documentation Feedback

Copyright © 2015–2018, Texas Instruments Incorporated

Code Composer Studio™ IDE 7.1+
for SimpleLink™ MSP432™ Microcontrollers

1 Installing Code Composer Studio IDE
The Code Composer Studio IDE can be obtained from the TI website.
• MSP432 low-power microcontrollers are supported by Code Composer Studio IDE 6.1 and higher

versions. Previous versions do not support MSP432 MCUs.
During the installation, select "SimpleLinkTM MSP432 TM low power + performance MCUs".

• To benefit from the SimpleLink ecosystem, Code Composer Studio IDE 7.1 or higher is required.

2 Updating Code Composer Studio IDE
Use the Code Composer Studio IDE update feature to update the installation before starting to work with
MSP432 low-power microcontrollers. To check for updates, click Help → Check for Updates.

Figure 1. Check for Updates

Code Composer Studio IDE connects to the TI update server and retrieves information about relevant
updates for the system. You can still select which update to install, but it is good practice to install all
updates.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU575J
http://www.ti.com/tool/ccstudio

www.ti.com Creating a Basic SimpleLink MSP432 Project

5SLAU575J–March 2015–Revised February 2018
Submit Documentation Feedback

Copyright © 2015–2018, Texas Instruments Incorporated

Code Composer Studio™ IDE 7.1+
for SimpleLink™ MSP432™ Microcontrollers

3 Creating a Basic SimpleLink MSP432 Project
Code Composer Studio IDE organizes its projects in workspaces. A new workspace is generated
automatically when you start Code Composer Studio IDE the first time. This workspace is blank.

You can either create a new project from scratch or start with one of the SimpleLink MSP432 SDK
examples described in Section 4. TI recommends starting from one of the examples.

To create a new project in the current workspace:
1. Click File → New → CCS Project.

Figure 2. Creating a New Code Composer Studio IDE Project

2. Select MSP432 or MSP432E4 as the target family (see Figure 3), which limits the list of devices in the
device pulldown list.

3. Select the device being used; for example, MSP432P401R.
4. Select the debug connection to use. In the following example, this is an XDS110 debug probe. These

settings can be modified later in the Project Properties.
5. Type a unique project name.
6. Click Finish. A new project is created and, along with it, a number of files are copied into the

workspace.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU575J

Creating a Basic SimpleLink MSP432 Project www.ti.com

6 SLAU575J–March 2015–Revised February 2018
Submit Documentation Feedback

Copyright © 2015–2018, Texas Instruments Incorporated

Code Composer Studio™ IDE 7.1+
for SimpleLink™ MSP432™ Microcontrollers

Figure 3. New Project Wizard

The workspace now contains a newly created project, including:
• A basic main.c file (if you have chosen that in the New CCS Project dialog)
• The interrupt vector file startup_msp432p401r_ccs.c where all interrupt handlers are predefined
• The linker command file msp432p401r.cmd
• In the target configuration folder, a file MSP432P401R.ccxml including a link to the XDS-110 debug

probe

Figure 4. New Project Files

Now you can start developing code.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU575J

www.ti.com Importing SimpleLink Examples From TI Resource Explorer

7SLAU575J–March 2015–Revised February 2018
Submit Documentation Feedback

Copyright © 2015–2018, Texas Instruments Incorporated

Code Composer Studio™ IDE 7.1+
for SimpleLink™ MSP432™ Microcontrollers

4 Importing SimpleLink Examples From TI Resource Explorer
The recommended way to start a new project in Code Composer Studio IDE is to use an appropriate
example from the TI Resource Explorer and adapt it. The TI Resource Explorer makes all examples and
documentation from the SimpleLink MSP432 SDK available inside Code Composer Studio IDE. This
includes drivers, RTOS, and examples from bare metal to high-level APIs.

The TI Resource Explorer is available online at http://dev.ti.com/tirex/ and is also included in Code
Composer Studio IDE 7.0 and above. In Code Composer Studio IDE 7.1+, either select View →
Resource Explorer or create a new project and select SDK Examples → Open Resource Explorer (see
Figure 5).

Figure 5. New CCS Project, Open Resource Explorer

In the TI Resource Explorer, select your MSP432 device in the search field to list only the examples that
apply to that device, so that you can more easily find an example that suits you. Basic ADC examples, for
example, are found in the hierarchy (see Figure 6).

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU575J
http://dev.ti.com/tirex/

Debugging Your Application www.ti.com

8 SLAU575J–March 2015–Revised February 2018
Submit Documentation Feedback

Copyright © 2015–2018, Texas Instruments Incorporated

Code Composer Studio™ IDE 7.1+
for SimpleLink™ MSP432™ Microcontrollers

Figure 6. Selecting an Example in TI Resource Explorer

Click one of the buttons in the top right corner (see Figure 6) to download the SDK and import the
example to Code Composer Studio IDE. When the SDK is already locally installed in the default location,
all examples are taken directly from the installed SDK.

NOTE: The SimpleLink MSP432 SDK supports the MSP432P4xx devices, and the SimpleLink
MSP432E4 SDK supports the MSP432E4 devices.

Alternatively, you can import the example directly from the SDK installation path using the import dialog in
your project explorer. After import, you can continue to compile or expand the example.

All documentation for the SDK can be found in the SDK installation path in the docs folder. Open
Documention_Overview.html from that folder and then navigate to the Quick Start Guide for your IDE.

A one-time integration of the SimpleLink platform lets you add any combination of devices from the
portfolio into your design. The ultimate goal of the SimpleLink platform is to achieve 100 percent code
reuse when your design requirements change. For more information, visit www.ti.com/simplelink.

5 Debugging Your Application
The following debug probes have been tested successfully with Code Composer Studio IDE.
• TI XDS100v2, XDS100v3, XDS200, XDS110 (including the XDS110 stand-alone probe)
• TI MSP-FET (for more information visit the MSP-FET page)

NOTE: The MSP-FET debug probe is limited to MSP432P4xx devices.

Do not connect through a USB hub when performing a firmware update on the MSP-FET,
the MSP-FET430UIF, or a LaunchPad™ development kit.

• Segger J-Link (for more information, visit the TI J-Link Support Emulator wiki page)
In Code Composer Studio IDE 6.1.3.x, the Segger installation instructions are directly linked in the
Code Composer Studio IDE Apps Center.
For some debug probes, power must be supplied externally to the device. For details, see the user

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU575J
http://www.ti.com/tool/simplelink-msp432-sdk
http://www.ti.com/tool/simplelink-msp432e4-sdk
http://www.ti.com/tool/simplelink-msp432e4-sdk
http://www.ti.com/simplelink
http://www.ti.com/tool/tmdsemu110-u
http://www.ti.com/tool/MSP-FET
http://processors.wiki.ti.com/index.php/J-Link_Emulator_Support

www.ti.com Debugging Your Application

9SLAU575J–March 2015–Revised February 2018
Submit Documentation Feedback

Copyright © 2015–2018, Texas Instruments Incorporated

Code Composer Studio™ IDE 7.1+
for SimpleLink™ MSP432™ Microcontrollers

guide for your probe. For the TI XDS110 stand-alone probe, see the XDS110 Debug Probe User's
Guide .

5.1 Debugger Settings
After you create a project, you can change the debugger used to debug the application. To change the
debugger, right click on the project in the workspace and choose Properties (see Figure 7).

Figure 7. Project Properties

In the project properties window, make sure that you are in the General options pane. There you can see
a drop-down list of target connections. Choose the debugger from this list and click OK.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU575J
http://www.ti.com/lit/pdf/sprui94
http://www.ti.com/lit/pdf/sprui94

Debugging Your Application www.ti.com

10 SLAU575J–March 2015–Revised February 2018
Submit Documentation Feedback

Copyright © 2015–2018, Texas Instruments Incorporated

Code Composer Studio™ IDE 7.1+
for SimpleLink™ MSP432™ Microcontrollers

Figure 8. Choose Debugger Connection

More debugger-specific settings can be made in the target configuration settings. For this double click on
the *.ccxml file in your project explorers "targetConfigs" folder. For example, switching from serial wire
debug (SWD) to JTAG. See Section 6 for details on these settings.

NOTE: Figure 9 shows the additional settings that are needed for debugging when using MSP-FET
and the GNU Linaro compiler (go to project properties → Debug → Program/Memory Load
Options).

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU575J

www.ti.com Debugging Your Application

11SLAU575J–March 2015–Revised February 2018
Submit Documentation Feedback

Copyright © 2015–2018, Texas Instruments Incorporated

Code Composer Studio™ IDE 7.1+
for SimpleLink™ MSP432™ Microcontrollers

Figure 9. Debug Settings for GNU Compiler and MSP-FET

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU575J

Debugging Your Application www.ti.com

12 SLAU575J–March 2015–Revised February 2018
Submit Documentation Feedback

Copyright © 2015–2018, Texas Instruments Incorporated

Code Composer Studio™ IDE 7.1+
for SimpleLink™ MSP432™ Microcontrollers

5.2 Debugging ROM Driver Library
The MSP432P4xx family includes a complete peripheral driver library (DriverLib) fully integrated into the
ROM memory. Developers can leverage the ROM DriverLib for multiple benefits including access to highly
robust and tested APIs, single-cycle ROM execution speed at lower power consumption, and freeing up
memory space for additional application code. Developers can gain access to ROM APIs by adding
DriverLib header file to projects and linking to a prebuilt library.

The driver library source code is now part of the SimpleLink MSP432 SDK. The driver library is a low-level
software layer below the TI drivers, which are also part of the SDK. In the SDK, the DriverLib source code
can be found in <SDK_InstallationPath>\source\ti\devices\msp432p4xx\driverlib.

For more information on MSP432P4xx Driver Library and what is provided in ROM DriverLib, see the
documentation in the SimpleLink MSP432 SDK.

To debug the ROM driver library, make sure that TARGET_IS_MSP432P4XX is listed in Advanced
Options → Predefined Symbols (see Figure 10).

Figure 10. Predefined Symbol for ROM Debugging

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU575J
http://www.ti.com/tool/simplelink-msp432-sdk

www.ti.com Debugging Your Application

13SLAU575J–March 2015–Revised February 2018
Submit Documentation Feedback

Copyright © 2015–2018, Texas Instruments Incorporated

Code Composer Studio™ IDE 7.1+
for SimpleLink™ MSP432™ Microcontrollers

5.3 Start Debugging Session
After the project has been set to the correct debugger, you can begin to debug the application. To launch
a debug session, click the icon in the top toolbar of the IDE (see Figure 11).

Figure 11. Launch Debug Session

After the IDE has finished compiling, linking, and downloading the code to the device, the debug session
starts and you can begin to debug the application.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU575J

Debugging Your Application www.ti.com

14 SLAU575J–March 2015–Revised February 2018
Submit Documentation Feedback

Copyright © 2015–2018, Texas Instruments Incorporated

Code Composer Studio™ IDE 7.1+
for SimpleLink™ MSP432™ Microcontrollers

Figure 12. Debug Session

5.4 Debugger Messages
MSP-FET
• If the device IP protection on a MSP432P4xx device is enabled and MSP-FET is used, the following

message is displayed in the console during device connect:
"IP protection is enabled on the device. Not all flash memory locations may be readable or writable."
See the online documentation on www.ti.com/msp432 for details and tools for handling device security.

• If the VCC voltage is not high enough when trying to erase or write flash memory, the following
message is displayed in the console:
"Target device supply voltage is too low for Flash erase/programming."
Raise the supply voltage to correct this error.

XDS
• If the MSP432P4xx device is not accessible, this might be because device protection is enabled. In

this case, XDS debuggers display a popup window that offers to perform a factory reset.
• For MSP432E4 devices that might be locked, the XDS probe displays a menu offering mass erasing

the device or alternatively gives instructions how to unlock the device with the command line tools.

For more details on recovering a locked microcontroller, see the device-specific data sheet.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU575J
http://www.ti.com/msp432

www.ti.com Using Serial Wire Output (SWO) Hardware Trace Analyzer

15SLAU575J–March 2015–Revised February 2018
Submit Documentation Feedback

Copyright © 2015–2018, Texas Instruments Incorporated

Code Composer Studio™ IDE 7.1+
for SimpleLink™ MSP432™ Microcontrollers

6 Using Serial Wire Output (SWO) Hardware Trace Analyzer
In Code Composer Studio IDE, the SWO Trace tools for MSP432 MCUs are implemented using the
features of the Arm CoreSight™ components, especially the Instrumentation Trace Macrocell (ITM) and
Data Watchpoint and Trace Unit (DWT) (ETM is not present in MSP432P4xx MCUs).

NOTE: The ETM trace available on MSP432E4 devices is currently not supported in the CCS tool
chain.

This user’s guide describes only how to enable the SWO trace in Code Composer Studio IDE. For details
of the trace hardware and example use cases, see Reference [3].

6.1 Configure the Project for SWO Trace
To enable SWO trace:
1. Expand the project in Project Explorer and open the projects *.ccxml file in the targetConfigs folder.

Select the correct debug probe (see Figure 13).

Figure 13. Target Configuration

2. Click Target Configuration in the Advanced Setup section then click on the selected debug probe.
3. Figure 14 shows the Connection Properties. In JTAG/SWD mode, select SWD Mode – Aux COM port

is target TDO pin.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU575J

Using Serial Wire Output (SWO) Hardware Trace Analyzer www.ti.com

16 SLAU575J–March 2015–Revised February 2018
Submit Documentation Feedback

Copyright © 2015–2018, Texas Instruments Incorporated

Code Composer Studio™ IDE 7.1+
for SimpleLink™ MSP432™ Microcontrollers

Figure 14. Connection Properties

6.2 Run Serial Wire Trace
After finishing SWO configuration, start a debug session to start tracing:
1. Build the project either by selecting Build Project from the project's context menu or by selecting the

hammer icon.
2. Enter a debug session: Right click the project name, select Debug As → Code Composer Studio

Debug Session. Alternatively, click the bug icon.
3. In debug mode, go to Tools → Hardware Trace Analyzer and choose one of the following options:

• Statistical Function Profiling for analyzing how often each function is called and what percentage of
CPU cycles is consumed

• Data Variable Tracing for obtaining a graph on the value of the variable using the ITM
• Interrupt Profiling for getting data on when interrupts occurred and how these interrupt each other.
• Custom Core Trace for tracing user defined strings at specified code locations

See MSP432™ Debugging Tools: Using Serial Wire Output With CCS Trace Analyzer for details.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU575J
http://www.ti.com/lit/pdf/SLAA674

www.ti.com EnergyTraceTM Technology

17SLAU575J–March 2015–Revised February 2018
Submit Documentation Feedback

Copyright © 2015–2018, Texas Instruments Incorporated

Code Composer Studio™ IDE 7.1+
for SimpleLink™ MSP432™ Microcontrollers

7 EnergyTraceTM Technology
EnergyTraceTM Technology is an energy-based code analysis tool that measures and displays the
application's energy profile and helps to optimize it for ultra-low power consumption.

MSP432 devices with built-in EnergyTrace+[CPU State] (or in short EnergyTrace+) technology allow
real-time monitoring of many internal device states while user program code executes. EnergyTrace+
technology is supported on selected MSP432 devices and debuggers (for example, MSP432P4xx
devices).

EnergyTrace mode (without the "+") is the base of EnergyTrace Technology and enables analog energy
measurement to determine the energy consumption of an application but does not correlate energy
consumption to internal device information. The EnergyTrace mode is available for all MSP432 devices
with selected debuggers, including Code Composer Studio IDE.

Devices that support EnergyTrace technology also benefit from the XDS110 EnergyTrace™ High Dynamic
Range (ETHDR) debug probe add-on.

7.1 Energy Measurement
Debuggers with EnergyTrace technology support include a new and unique way of continuously
measuring the energy supplied to a target microcontroller that differs considerably from the well-known
method of amplifying and sampling the voltage drop over a shunt resistor at discrete times. A software-
controlled dc-dc converter is used to generate the target power supply. The time density of the dc-dc
converter charge pulses equals the energy consumption of the target microcontroller. A built-in on-the-fly
calibration circuit defines the energy equivalent of a single dc-dc charge pulse.

Figure 15 shows the energy measurement principle. Periods with a small number of charge pulses per
time unit indicate low energy consumption and thus low current flow. Periods with a high number of charge
pulses per time unit indicate high energy consumption and also a high current consumption. Each charge
pulse leads to a rise of the output voltage VOUT, which results in an unavoidable voltage ripple common to
all dc-dc converters.

Figure 15. Pulse Density and Current Flow

The benefit of sampling continuously is evident: even the shortest device activity that consumes energy
contributes to the overall recorded energy. No shunt-based measurement system can achieve this.

7.2 Integration With Code Composer Studio IDE
EnergyTrace technology is available as part of Texas Instrument's Code Composer Studio IDE for
MSP432 microcontrollers. During debugging of an application, additional windows are available if the
hardware supports EnergyTrace technology.

7.3 Enabling EnergyTrace Technology and Selecting the Default Mode
By default, the EnergyTrace technology feature is disabled in the Code Composer Studio Preferences. To
enable it, go to Window → Preferences → Code Composer Studio → Advanced Tools →
EnergyTrace™ Technology (see Figure 16).

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU575J
http://www.ti.com/tool/TMDSEMU110-ETH
http://www.ti.com/tool/TMDSEMU110-ETH

EnergyTraceTM Technology www.ti.com

18 SLAU575J–March 2015–Revised February 2018
Submit Documentation Feedback

Copyright © 2015–2018, Texas Instruments Incorporated

Code Composer Studio™ IDE 7.1+
for SimpleLink™ MSP432™ Microcontrollers

Figure 16. EnergyTraceTM Technology Preferences

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU575J

www.ti.com EnergyTraceTM Technology

19SLAU575J–March 2015–Revised February 2018
Submit Documentation Feedback

Copyright © 2015–2018, Texas Instruments Incorporated

Code Composer Studio™ IDE 7.1+
for SimpleLink™ MSP432™ Microcontrollers

For the target connection, select XDS110 or, if using an MSP-FET that supports EnergyTrace technology,
select one of the USB connections.

Two capture modes are supported.
• The full-featured EnergyTrace+[CPU State] mode that delivers real-time device state information

together with energy measurement data
• The EnergyTrace mode that delivers only energy measurement data

Use the radio button to select the mode to enable when a debug session is launched. If an MSP432
device does not support device state capturing, the selection is ignored and Code Composer Studio starts
in EnergyTrace mode.

While a debug session is active, click the icon in the Profile window to switch between the modes.

NOTE: If the EnergyTrace technology windows are not opened when a debug session starts, verify
the following items:
• Does the hardware (debugger and device) support EnergyTrace technology? To

determine if the selected device supports EnergyTrace technology, see the device-
specific data sheet or the user guide that came with the evaluation board.

• Is EnergyTrace technology globally enabled in Window → Preferences → Code
Composer Studio → Advanced Tools → EnergyTrace™ Technology?

7.4 Controlling EnergyTrace Technology
EnergyTrace technology can be controlled using the control bar icons in the Profile window (see
Figure 17). Table 1 describes the function of each of these buttons.

Figure 17. EnergyTrace™ Technology Control Bar

Table 1. EnergyTrace™ Technology Control Bar Icons

Enable or disable EnergyTrace technology. When disabled, icon turns gray.

Set capture period: 5 sec, 10 sec, 30 sec, 1 min, or 5 min. Data collection stops after time has elapsed.
However, the program continues to execute until the Pause button in the debug control window is clicked.

Save profile to project directory. When saving an EnergyTrace+ profile, the default filename starts with
"EnergyTrace_D" followed by a timestamp. When saving an EnergyTrace profile, the default filename starts with
"EnergyTrace" followed by a timestamp.

Load previously saved profile for comparison.

Restore graphs or open Preferences window.

Switch between EnergyTrace+ mode and EnergyTrace mode

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU575J

EnergyTraceTM Technology www.ti.com

20 SLAU575J–March 2015–Revised February 2018
Submit Documentation Feedback

Copyright © 2015–2018, Texas Instruments Incorporated

Code Composer Studio™ IDE 7.1+
for SimpleLink™ MSP432™ Microcontrollers

7.5 EnergyTrace+ Mode
When debugging devices with built-in EnergyTrace+ support, the EnergyTrace+ mode gives information
about both energy consumption and the internal state of the target microcontroller. The following windows
are opened during the startup of a debug session:
• Profile
• States
• Power
• Energy

Figure 18. Debug Session With EnergyTrace+ Graphs

The Profile window (see Figure 19) is the control interface for EnergyTrace+. It can be used to set the
capturing time or to save the captured data for later reference. The Profile window also displays a
compressed view of the captured data and allows comparison with previous data.

Figure 19. Profile Window

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU575J

www.ti.com EnergyTraceTM Technology

21SLAU575J–March 2015–Revised February 2018
Submit Documentation Feedback

Copyright © 2015–2018, Texas Instruments Incorporated

Code Composer Studio™ IDE 7.1+
for SimpleLink™ MSP432™ Microcontrollers

The Profile window enables a quick overview of the resource use of the profiled application.
• CPU: Shows information about program execution

– Low Power Mode: Shows a summary of low-power mode use.
– Active Mode: Shows which functions have been executed during active mode. Functions in the run-

time library are listed separately under the _RTS_ subcategory. If the device supports IP
Encapsulation, a line labeled as <Protected> is displayed to indicate the time executing out of IP
encapsulated memory.

The States window (see Figure 20) shows the real-time trace of the target microcontroller's internal states
during the captured session. State information includes the power modes, on and off state of peripheral
modules, and the state of the system clocks.

Figure 20 shows a device going into a low-power mode then back to active mode. The States window
allows a direct verification of whether or not the application exhibits the expected behavior; for example,
that a peripheral is disabled after a certain activity.

Figure 20. States Window

The Power window (see Figure 21) shows the dynamic power consumption of the target over time. The
current profile is plotted in light blue color, while a previously recorded profile that has been reloaded for
comparison is plotted in yellow color.

Figure 21. Power Window

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU575J

EnergyTraceTM Technology www.ti.com

22 SLAU575J–March 2015–Revised February 2018
Submit Documentation Feedback

Copyright © 2015–2018, Texas Instruments Incorporated

Code Composer Studio™ IDE 7.1+
for SimpleLink™ MSP432™ Microcontrollers

The Energy window (see Figure 22) shows the accumulated energy consumption of the target over time.
The current profile is plotted in light blue color, while a previously recorded profile that has been reloaded
for comparison is plotted in yellow color.

Figure 22. Energy Window

NOTE: During the capture of the internal states, the target microcontroller is constantly accessed by
the JTAG or Spy-Bi-Wire debug logic. These debug accesses consume energy; therefore, no
absolute power numbers are shown on the Power and Energy graph vertical axis. To see
absolute power numbers of the application, it is recommended to use the EnergyTrace
mode in combination with the Free Run option. In this mode, the debug logic of the target
microcontroller is not accessed while measuring energy consumption.

Free Run mode is nonintrusive to the device but still uses the debug port, which affects
energy measurement. For highest accuracy, run EnergyTrace without debugging or Free
Run. Also note that the graphs for energy and power are printed in blue instead of green
when no accurate measurement is possible.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU575J

www.ti.com EnergyTraceTM Technology

23SLAU575J–March 2015–Revised February 2018
Submit Documentation Feedback

Copyright © 2015–2018, Texas Instruments Incorporated

Code Composer Studio™ IDE 7.1+
for SimpleLink™ MSP432™ Microcontrollers

7.6 EnergyTrace Mode
This mode allows a standalone use of the energy measurement feature with MSP432 microcontrollers that
do not have built-in EnergyTrace+ support. It can also be used to verify the energy consumption of the
application without debugger activity. If the EnergyTrace mode is selected in the Preferences window, the
following windows open when a debug session starts (see Figure 23):
• Profile
• Power
• Energy

Figure 23. Debug Session With EnergyTrace Graphs

In the EnergyTrace mode, the Profile window shows statistical data about the application that has been
profiled (see Figure 24). The following parameters are shown:
• Captured time
• Total energy consumed by the application (in mJ)
• Minimum, mean, and maximum power (in mW)
• Mean voltage (in V)
• Minimum, mean, and maximum current (in mA)
• Estimated life time of a CR2032 battery (in days) for the captured energy profile

NOTE: The formula to calculate the battery life time assumes an ideal 3-V battery and does not
account for temperature, aging, peak current, and other factors that could negatively affect
battery capacity. Changing the target voltage (for example, from 3.6 V to 3 V) might cause
the analog circuitry to behave differently and operate in a more or less efficient state, hence
reducing or increasing energy consumption. The value shown in the Profile window cannot
substitute measurements on real hardware.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU575J

EnergyTraceTM Technology www.ti.com

24 SLAU575J–March 2015–Revised February 2018
Submit Documentation Feedback

Copyright © 2015–2018, Texas Instruments Incorporated

Code Composer Studio™ IDE 7.1+
for SimpleLink™ MSP432™ Microcontrollers

Figure 24. EnergyTrace Profile Window

The Power window (see Figure 25) shows the dynamic power consumption of the target over time. The
current profile is plotted in light blue color, while a previously recorded profile that has been reloaded for
comparison is plotted in yellow color.

Figure 25. Zoom Into Power Window

The Energy window (see Figure 26) shows the accumulated energy consumption of the target over time.
The current profile is plotted in light blue color, while a previously recorded profile that has been reloaded
for comparison is plotted in yellow color.

Figure 26. Current Profile (Blue) With Recorded Profile (Yellow)

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU575J

www.ti.com EnergyTraceTM Technology

25SLAU575J–March 2015–Revised February 2018
Submit Documentation Feedback

Copyright © 2015–2018, Texas Instruments Incorporated

Code Composer Studio™ IDE 7.1+
for SimpleLink™ MSP432™ Microcontrollers

NOTE: During program execution through the debugger's view Resume button, the target
microcontroller is constantly accessed by the JTAG or Spy-Bi-Wire protocol to detect when a
breakpoint has been hit. Inevitably, these debug accesses consume energy in the target
domain and change the result shown in both Energy and Power graphs. To see the absolute
power consumption of an application, TI recommends using the Free Run mode. In Free
Run mode, the debug logic of the target microcontroller is not accessed. See Figure 27 for
an example of the effect of energy consumption coming from debug accesses. The yellow
profile was recorded in Resume mode, and the green profile was recorded in Free Run
mode.

Figure 27. Energy Profile of the Same Program in Resume (Yellow Line) and Free Run (Green Line)

7.7 Comparing Captured Data With Reference Data
The EnergyTrace technology can be used in various ways. One is to check the device's internal states
over time against the expected behavior and correct any misbehavior; for example, due to a peripheral not
being disabled after periodic usage. Another way is to compare the captured data against previously
captured data. The previously captured data is called the reference data in the following discussion.

After the reference data has been loaded, a yellow reference graph is plotted in the Power and Energy
windows. The Power window shows the power profiles of both data sets over time and is useful to
determine any changes in static power consumption; for example, due to use of a deeper low-power mode
or disabling of unused peripherals. It also shows how the dynamic power consumption has changed from
one measurement to the other; for example, due to ULP Advisor hints being implemented. The Energy
window shows the accumulated energy consumption over time and gives an indication which profile is
more energy efficient.

In the EnergyTrace+ mode, the condensed view of both captured and reference data is displayed in the
Profile window (see Figure 28). You can quickly see how the overall energy consumption and use of
power modes, peripherals, and clocks changed between both capture sessions. In general, parameters
that have become better are shown with a green bar, and parameters that have become worse are shown
with a red bar. For example, time spent in Active Mode is generally seen as negative. Hence, if a code
change makes the application spend less time in active mode, the negative delta is shown as a green bar,
and the additional time spent in a low-power mode is shown as a green bar.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU575J

EnergyTraceTM Technology www.ti.com

26 SLAU575J–March 2015–Revised February 2018
Submit Documentation Feedback

Copyright © 2015–2018, Texas Instruments Incorporated

Code Composer Studio™ IDE 7.1+
for SimpleLink™ MSP432™ Microcontrollers

Figure 28. Comparing Profiles in EnergyTrace+ Mode

In the EnergyTrace mode, no States information is available to generate an exhaustive report. However,
the overall energy consumed during the measurement is compared and, with it, the Min, Mean, and Max
values of power and current. Parameters that have become better are shown with a green bar, and
parameters that have become worse are shown with a red bar (see Figure 29).

Figure 29. Comparing Profiles in EnergyTrace Mode

The delta bars are drawn linearly from 0% to 50%. Deltas larger than 50% do not result in a larger delta
bar.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU575J

www.ti.com EnergyTraceTM Technology

27SLAU575J–March 2015–Revised February 2018
Submit Documentation Feedback

Copyright © 2015–2018, Texas Instruments Incorporated

Code Composer Studio™ IDE 7.1+
for SimpleLink™ MSP432™ Microcontrollers

7.8 EnergyTrace Technology FAQs
Q: What is the sampling frequency of EnergyTrace+ technology?

A: The sampling frequency depends on the debugger and the selected debug protocol and its speed
setting. It typically ranges from 1 kHz (for example, when using the Spy-Bi-Wire interface set to SLOW) up
to 3.2 kHz (for example, when using the JTAG interface set to FAST). The debugger polls the state
information of EnergyTrace+ from the device status information. Depending on the sampling frequency, a
short or fast duty cycle active peripheral state may not be captured on the State graph. In addition, the
higher sampling frequency affects the device energy consumption under EnergyTrace.

Q: What is the sampling frequency of EnergyTrace technology?

A: The sampling frequency to measure the energy consumption is the same independent of which debug
protocol or speed and is approximately 4.2 kHz in Free Run mode.

Q: My Power graph seems to include noise. Is my board defective?

A: The power values shown in the Power graph are derived (that is, calculated) from the accumulated
energy counted by the measurement system. When the target is consuming little energy, a small number
of energy packets over time are supplied to the target, and the software needs to accumulate the dc-dc
charge pulses over time before a new current value can be calculated. For currents under 1 µA, this can
take up to one second, while for currents in the milliamp range, a current can be calculated every
millisecond. Additional filtering is not applied so that detail information is not lost. Another factor that
affects the energy (and with it, the current) that is consumed by the target is periodic background debug
access during normal code execution, either through capturing of States information or through breakpoint
polling. Try recording in Free Run mode to see a much smoother Power graph.

Q: I have a code that repeatedly calls functions that have the same size. I would expect the function
profile to show an equal distribution of the run time. In reality, I see some functions having slightly more
run time than expected, and some functions slightly less.

A: During program counter trace, various factors affect the number of times a function is detected by the
profiler over time. The microcontroller code could benefit from the internal cache, thus executing some
functions faster than others. Another influencing factor is memory wait states and CPU pipeline stalls,
which add time variance to the code execution. An outside factor is the sampling frequency of the
debugger itself, which normally runs asynchronous to the microcontroller's code execution speed, but in
some cases shows overlapping behavior, which also results in an unequal function run time distribution.

Q: My profile sometimes includes an <Undetermined> low-power mode, and there are gaps in the States
graph Power Mode section. Where does the <Undetermined> low-power mode originate from?

A: During transitions from active mode to low-power mode, internal device clocks are switched off, and
occasionally the state information is not updated completely. This state is displayed as <Undetermined> in
the Profile window, and the States graph shows a gap during the time that the <Undetermined> low-power
mode persists. The <Undetermined> state is an indication that the application has entered a low-power
mode, but which mode cannot be accurately determined. If the application is frequently entering low-power
modes, the <Undetermined> state will probably be shown more often than if the application only rarely
uses low-power modes.

Q: When capturing in EnergyTrace mode, the min and max values for power and current show deviation,
even though my program is the same. I would expect absolutely the same values.

A: The energy measurement method used on the hardware counts dc-dc charge pulses over time. Energy
and power are calculated from the energy over time. Due to statistical sampling effects and charge and
discharge effects of the output voltage buffer capacitors, it is possible that minimum and maximum values
of currents vary by some percent, even though the program is identical. The captured energy, however,
should be almost equal (in the given accuracy range).

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU575J

EnergyTraceTM Technology www.ti.com

28 SLAU575J–March 2015–Revised February 2018
Submit Documentation Feedback

Copyright © 2015–2018, Texas Instruments Incorporated

Code Composer Studio™ IDE 7.1+
for SimpleLink™ MSP432™ Microcontrollers

Q: What are the influencing factors for the accuracy of the energy measurement?

A: The energy measurement circuit is directly supplied from the USB bus voltage, and thus it is sensitive
to USB bus voltage variations. During calibration, the energy equivalent of a single dc-dc charge pulse is
defined, and this energy equivalent depends on the USB voltage level. To ensure a good repeatability and
accuracy, power the debugger directly from an active USB port, and avoid using bus-powered hubs and
long USB cables that can lead to voltage drops, especially when other consumers are connected to the
USB hub. Furthermore the LDO and resistors used for reference voltage generation and those in the
calibration circuit come with a certain tolerance and ppm rate over temperature, which also influences
accuracy of the energy measurement.

Q: I am trying to capture in EnergyTrace+ mode or EnergyTrace mode with a MSP432 device that is
externally powered, but there is no data shown in the Profile, Energy, Power and States window.

A: Both EnergyTrace+ mode and EnergyTrace mode require the target to be supplied from the debugger.
No data can be captured when the target microcontroller is externally powered.

Q: I cannot measure LPM currents when I am capturing in EnergyTrace+ mode. I am expecting a few
microamps but measure more than 150 µA.

A: Reading digital data from the target microcontroller consumes energy in the JTAG domain of the
microcontroller. Hence, an average current of approximately 150 µA is measured when connecting an
ampere meter to the device power supply pins. If you want to eliminate energy consumption through
debug communication, switch to EnergyTrace mode, and let the target microcontroller execute in Free
Run mode.

Q: My LPM currents seem to be wrong. I am expecting a few microamps, but measure more, even in Free
Run mode or when letting the device execute without debug control from an independent power supply.

A: The most likely cause of this extra current is improper GPIO termination, as floating pins can lead to
extra current flow. Also check the JTAG pins again, especially when the debugger is still connected (but
idle), as the debugger output signal levels in idle state might not match how the JTAG pins have been
configured by the application code. This could also lead to extra current flow.

Q: When I start the EnergyTrace+ windows through View → Other → EnergyTrace before launching the
debug session, data capture sometimes does not start.

A: Enable EnergyTrace through Window → Preferences → Code Composer Studio → Advanced Tools →
EnergyTrace™ Technology. When launching a debug session, the EnergyTrace+ windows automatically
open, and data capture starts when the device executes. If you accidentally close all EnergyTrace+
windows during a debug session, you can reopen them through View → Other → EnergyTrace.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU575J

www.ti.com Device Security (MSP432P4xx Devices Only)

29SLAU575J–March 2015–Revised February 2018
Submit Documentation Feedback

Copyright © 2015–2018, Texas Instruments Incorporated

Code Composer Studio™ IDE 7.1+
for SimpleLink™ MSP432™ Microcontrollers

8 Device Security (MSP432P4xx Devices Only)
On MSP432P4xx device variants, it is possible to protect the factory reset command with a password. If
you have done this, skip Section 8.1 and continue with Section 8.2.

8.1 Factory Reset Without Password
If you have disabled JTAG access on the device or are working on an application where you need to
unlock a secure IP zone, the lock can be only be removed by erasing all Flash memory, including USER
and INFO memory through a debugger invoked reboot cycle. To unlock a device, the following steps are
required
• Select a Target Configuration that matches the current debugger type
• Execute a script that triggers a reboot erase

These steps are explained in detail next.

Go to View → Target Configurations to see the available debugger configurations.

Figure 30. Show Target Configuration View

Code Composer Studio IDE opens a view that shows the target configurations it can identify in the current
workspace. Pick the one that works for the device and debugger. This example uses the configuration file
for an XDS100v2 debugger.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU575J

Device Security (MSP432P4xx Devices Only) www.ti.com

30 SLAU575J–March 2015–Revised February 2018
Submit Documentation Feedback

Copyright © 2015–2018, Texas Instruments Incorporated

Code Composer Studio™ IDE 7.1+
for SimpleLink™ MSP432™ Microcontrollers

Figure 31. List of Target Configurations

Now right click on the target configuration and select Launch Selected Configuration.

Figure 32. Launch Selected Target Configuration

The debugger now connects to the device (which is still possible), but does not try to halt the CPU, write
to registers, or even download code (which would not be possible). The Debug view shows the CPU core,
but marks it as disconnected.

Figure 33. Debug View After Launching Target Configuration

To access the Debugger Access Port, or DAP, right-click on the highlighted line that shows the CPU core,
and select Show all cores from the drop down menu.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU575J

www.ti.com Device Security (MSP432P4xx Devices Only)

31SLAU575J–March 2015–Revised February 2018
Submit Documentation Feedback

Copyright © 2015–2018, Texas Instruments Incorporated

Code Composer Studio™ IDE 7.1+
for SimpleLink™ MSP432™ Microcontrollers

Figure 34. Show All Cores

The MSP432P4xx Debug Access Port, or DAP, is now listed under Non Debuggable Devices.

Figure 35. List of All Cores in the MSP432P4xx

Now right-click on the DAP and select Connect Target.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU575J

Device Security (MSP432P4xx Devices Only) www.ti.com

32 SLAU575J–March 2015–Revised February 2018
Submit Documentation Feedback

Copyright © 2015–2018, Texas Instruments Incorporated

Code Composer Studio™ IDE 7.1+
for SimpleLink™ MSP432™ Microcontrollers

Figure 36. Manually Connecting to the DAP

When the debugger has connected to the DAP, the Debug view window changes, indicating a
successfully connected DAP.

Figure 37. DAP is Connected

Now you need to execute a Code Composer Studio IDE script that performs triggers a reboot reset
through the DAP. Click Scripts → default → MSP432_Factory_Reset.

Figure 38. Executing the Factory Reset Script

As the script is executed, the Console window shows that the mass erase has been executed. Now you
can terminate the debug connection. After you have power cycled the device, it is accessible in a normal
way again.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU575J

www.ti.com Device Security (MSP432P4xx Devices Only)

33SLAU575J–March 2015–Revised February 2018
Submit Documentation Feedback

Copyright © 2015–2018, Texas Instruments Incorporated

Code Composer Studio™ IDE 7.1+
for SimpleLink™ MSP432™ Microcontrollers

Figure 39. Mass Erase Script Console Output

8.2 Factory Reset With Password
If you have enabled password protection for the factory reset and disabled JTAG access on the device or
are working on an application where you need to unlock a secure IP zone, the lock can be removed only
by erasing all flash memory, including USER and INFO memory, through a debugger-invoked reboot
cycle.

Precondition: Factory reset with password must have been configured using the flash mailbox, either with
the help of the security and update tool (see Reference [6]) or by manipulating the flash mailbox with an
application.

To unlock a password protected device, the following steps are required:
1. Open ccs_base/emulation/gel/msp432_factory_reset_password.gel and enter the password in the user

section.
2. Launch Code Composer Studio IDE debug session or target configuration and connect to the device.
3. Open Tools → GEL Files.

Figure 40. Code Composer Studio IDE Tools – GEL File

4. Right click in the new window and select "Load GEL...".
5. Browse for msp432_factory_reset_password.gel and click Open.
6. To run the factory reset with password, select Scripts → default →

MSP432_FACTORY_RESET_PASSWORD

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU575J

Low-Power Debug (MSP432P4xx Devices Only) www.ti.com

34 SLAU575J–March 2015–Revised February 2018
Submit Documentation Feedback

Copyright © 2015–2018, Texas Instruments Incorporated

Code Composer Studio™ IDE 7.1+
for SimpleLink™ MSP432™ Microcontrollers

Figure 41. Factory Reset With Password GEL File

As the script is executed, the console window shows that the mass erase is being executed. When the
erase is complete, terminate the debug connection. Cycle the power to the device to reenable access to it.

NOTE: The factory reset with password command is a one-time password. When the password is
sent correctly, a factory reset is conducted, which resets EVERY security setting including
the factory reset with password settings.

The GEL file is available with MSP432 device support files 6.3.1.x and higher.

9 Low-Power Debug (MSP432P4xx Devices Only)
Under normal debug control, MSP432P4xx microcontrollers do not transition into low-power modes deeper
than LPM0 mode; that is, into either LPM0_VCORE0 or LPM0_VCORE1 mode. This behavior is a
consequence of the standardized Cortex-M debug architecture. Therefore, current consumption and IRQ
wake-up timing are different from a free-running application.

To verify the current consumption and timing of an application while still under basic debug control,
MSP432 offers the Low Power Run feature. When enabled, the MCU transitions into exactly the low-
power mode that the application specifies, with internal clocks disabled and the power management
module shutting down internal power domains. This has some implications:
• Previously set breakpoints are reached, but the IDE does not automatically indicate that the device has

halted. The user must click the halt icon to enable the IDE to reconnect and show where the program
has halted.

• Auto Run after loading a program does not work: The breakpoint that is set automatically by the IDE
[for example, at main()] is reached, but the IDE does not switch to halt automatically. When the user
halts manually after program load, the program counter is at start of main().

• SWO trace does not work when transitioning into power modes lower than AM0_SL or AM1_SL mode

To enable the feature in Code Composer Studio IDE, right click on the active project in the Project
Explorer and click on Properties.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU575J

www.ti.com Low-Power Debug (MSP432P4xx Devices Only)

35SLAU575J–March 2015–Revised February 2018
Submit Documentation Feedback

Copyright © 2015–2018, Texas Instruments Incorporated

Code Composer Studio™ IDE 7.1+
for SimpleLink™ MSP432™ Microcontrollers

Figure 42. Properties Menu

In the Properties window, select Debug, then go to Misc/Other Options, and enable the Allow power
transitions while running if supported (low power running) option.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU575J

Low-Power Debug (MSP432P4xx Devices Only) www.ti.com

36 SLAU575J–March 2015–Revised February 2018
Submit Documentation Feedback

Copyright © 2015–2018, Texas Instruments Incorporated

Code Composer Studio™ IDE 7.1+
for SimpleLink™ MSP432™ Microcontrollers

Figure 43. Enabling Low Power Run

When Low Power Run is enabled, the MCU will go to any low-power mode specified. You can verify the
effect by watching the CPU core status display during a debug session. When the MCU goes to a low-
power mode equal or deeper than DSL, the debugger will report a loss of connection, due to the MSP432
clocks all being disabled, including the clock that operates the Debug Access Port (DAP).

Figure 44. CPU Core Status Display Indicating Deep Sleep Mode

When halting the device, the debugger will reconnect, and the IDE will show the current program counter
location, which in this case will be the WFI assembly instruction that sent the MSP432 to sleep.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU575J

www.ti.com Frequently Asked Questions

37SLAU575J–March 2015–Revised February 2018
Submit Documentation Feedback

Copyright © 2015–2018, Texas Instruments Incorporated

Code Composer Studio™ IDE 7.1+
for SimpleLink™ MSP432™ Microcontrollers

Figure 45. Program Counter Located at WFI Instruction

10 Frequently Asked Questions
Q: I cannot program my LaunchPad™ kit; the IDE cannot connect to target. What's wrong?

A: Check the following:
• Is the JTAG switch (S101) in the correct orientation?

Switch to left for XDS110-ET onboard debugger
Switch to the right for external debugger connection

• Check the debugger settings: change to SWD Mode – Aux COM port is target TDO pin. When the
settings of Port J (PJSEL0 and PJSEL1 bits) are changed, full JTAG access is prevented on these
pins. Changing to use SWD allows access through the dedicated debug pins only. Figure 46 shows
how to configure the debugger to use SWD instead of JTAG by modifying the MSP432P401R.ccxml
file.

Figure 46. Change Debugger Settings to SWD

• If even this cannot connect, reset the device to factory settings. Review Section 8 for information on
how to perform a factory reset on the device.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU575J

Additional Code Composer Studio IDE Information www.ti.com

38 SLAU575J–March 2015–Revised February 2018
Submit Documentation Feedback

Copyright © 2015–2018, Texas Instruments Incorporated

Code Composer Studio™ IDE 7.1+
for SimpleLink™ MSP432™ Microcontrollers

Q: Why doesn't the backchannel UART on the MSP432 LaunchPad work with my serial terminal program
at speeds faster than 56000 baud?

A: Certain serial terminal programs such as HTerm or the Code Composer Studio IDE built-in terminal
might not work with the MSP432 LaunchPad at specific baud rates, resulting in the software not being
able to open the virtual COM port or in the baud rate getting configured incorrectly. An issue with the
LaunchPad's emulator firmware has been identified and will be fixed in the next release. Until the update
is available, use Tera Term, ClearConnex, or HyperTerminal instead or reduce the baud rate to speeds of
38400 baud or lower.

Q: Problems plugging the MSP432 LaunchPad into a USB3.0 Port

A: It has been observed that when the MSP432 LaunchPad is connected to USB3.0 ports provided by a
certain combination of USB3.0 host controller hardware and associated device drivers that the IDE is
unable to establish a debug session with the LaunchPad, resulting in an error message like "CS_DAP_0:
Error connecting to the target: (Error -260 @ 0x0) An attempt to connect to the XDS110 failed" in the case
of Code Composer Studio. In this case the Code Composer Studio IDE-provided low-level command line
utility ‘xdsdfu' will also not be able to establish a connection with the LaunchPad.

Specifically, this issue was observed on PCs running Windows 7 that show the "Renesas Electronics USB
3.0 Host Controller" and the associated "Renesas Electronics USB 3.0 Root Hub" in the device manager.
After updating the associated Windows USB drivers to more recent versions obtained from the hardware
vendor the issue went away. There might be other USB3.0 hardware and device driver combinations that
will lead to the same issue. If you think you might be affected, contact the PC vendor or locate and install
more recent versions of the USB3.0 device drivers. Alternatively, connect the LaunchPad to an USB2.0
port on the PC if available.

Q: I cannot get the backchannel UART to connect. What's wrong?

A: Check the following:
• Do the baud rate in the host's terminal application and the eUSCI settings match?
• Are the appropriate jumpers in place on the isolation jumper block?
• Probe on RXD and send data from the host. If you don't see data, it might be a problem on the host

side.
• Probe on TXD while sending data from the MSP432. If you don't see data, it might be a configuration

problem with the eUSCI module.
• Consider the use of the hardware flow control lines (especially for higher baud rates).

Q: How can I easily unlock the SYS_CTL register block on my MSP432P4xx device?

A: For the TI Arm compiler, there is a macro define available for doing so. See
#define UNLOCK_DEVICE in the corresponding device header.

Q: My MSP432P4xx or MSP432E device has been locked, what can I do?

A: MSP432P4xx and MSP432E devices behave differently when locked, and the unlock process also
differs. See the corresponding sections in the device-specific technical reference manual or data sheet. If
you are using an XDS debug probe, see Section 5.4 for the expected behavior when the debugger detects
a locked device.

11 Additional Code Composer Studio IDE Information
For more information about Code Composer Studio IDE, see the following links:
• Code Composer Studio Information
• Code Composer Studio v7 Training
• Code Composer Studio v7 Wiki

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU575J
http://www.ti.com/tool/ccstudio
http://processors.wiki.ti.com/index.php/Category:CCSv7_Training
http://processors.wiki.ti.com/index.php/Category:Code_Composer_Studio_v7

www.ti.com References

39SLAU575J–March 2015–Revised February 2018
Submit Documentation Feedback

Copyright © 2015–2018, Texas Instruments Incorporated

Code Composer Studio™ IDE 7.1+
for SimpleLink™ MSP432™ Microcontrollers

12 References

1. SimpleLink MSP432 SDK
2. SimpleLink MSP432E4 SDK
3. J-Link Emulator Support
4. MSP432™ Debugging Tools: Using Serial Wire Output With CCS Trace Analyzer
5. MSP-FET for MSP432 Microcontrollers
6. SimpleLink MSP432 Security and Update Tool
7. XDS110 JTAG Debug Probe
8. Debuggers for MSP432 Microcontrollers
9. Migration Guide for SimpleLink MSP432 SDK
10. XDS110 EnergyTrace™ High Dynamic Range (ETHDR) debug probe add-on

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU575J
http://www.ti.com/tool/simplelink-msp432-sdk
http://www.ti.com/tool/simplelink-msp432e4-sdk
http://processors.wiki.ti.com/index.php/J-Link_Emulator_Support
http://www.ti.com/lit/pdf/SLAA674
http://www.ti.com/tool/MSP-FET
http://www.ti.com/tool/MSP432-SECURITY-AND-UPDATE-TOOL
http://www.ti.com/tool/tmdsemu110-u
http://www.ti.com/tool/msp432-debuggers
http://dev.ti.com/tirex/#/?link=Software%2FSimpleLink%20MSP432%20SDK%2FDocuments%2FMigration%20Guide
http://www.ti.com/tool/TMDSEMU110-ETH

Revision History www.ti.com

40 SLAU575J–March 2015–Revised February 2018
Submit Documentation Feedback

Copyright © 2015–2018, Texas Instruments Incorporated

Revision History

Revision History
NOTE: Page numbers for previous revisions may differ from page numbers in the current version.

Changes from December 13, 2017 to February 13, 2018 ... Page

• Added the paragraph that begins "Do not connect through a USB hub..." in the note in Section 5, Debugging Your
Application.. 8

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU575J

IMPORTANT NOTICE FOR TI DESIGN INFORMATION AND RESOURCES

Texas Instruments Incorporated (‘TI”) technical, application or other design advice, services or information, including, but not limited to,
reference designs and materials relating to evaluation modules, (collectively, “TI Resources”) are intended to assist designers who are
developing applications that incorporate TI products; by downloading, accessing or using any particular TI Resource in any way, you
(individually or, if you are acting on behalf of a company, your company) agree to use it solely for this purpose and subject to the terms of
this Notice.
TI’s provision of TI Resources does not expand or otherwise alter TI’s applicable published warranties or warranty disclaimers for TI
products, and no additional obligations or liabilities arise from TI providing such TI Resources. TI reserves the right to make corrections,
enhancements, improvements and other changes to its TI Resources.
You understand and agree that you remain responsible for using your independent analysis, evaluation and judgment in designing your
applications and that you have full and exclusive responsibility to assure the safety of your applications and compliance of your applications
(and of all TI products used in or for your applications) with all applicable regulations, laws and other applicable requirements. You
represent that, with respect to your applications, you have all the necessary expertise to create and implement safeguards that (1)
anticipate dangerous consequences of failures, (2) monitor failures and their consequences, and (3) lessen the likelihood of failures that
might cause harm and take appropriate actions. You agree that prior to using or distributing any applications that include TI products, you
will thoroughly test such applications and the functionality of such TI products as used in such applications. TI has not conducted any
testing other than that specifically described in the published documentation for a particular TI Resource.
You are authorized to use, copy and modify any individual TI Resource only in connection with the development of applications that include
the TI product(s) identified in such TI Resource. NO OTHER LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE TO
ANY OTHER TI INTELLECTUAL PROPERTY RIGHT, AND NO LICENSE TO ANY TECHNOLOGY OR INTELLECTUAL PROPERTY
RIGHT OF TI OR ANY THIRD PARTY IS GRANTED HEREIN, including but not limited to any patent right, copyright, mask work right, or
other intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information
regarding or referencing third-party products or services does not constitute a license to use such products or services, or a warranty or
endorsement thereof. Use of TI Resources may require a license from a third party under the patents or other intellectual property of the
third party, or a license from TI under the patents or other intellectual property of TI.
TI RESOURCES ARE PROVIDED “AS IS” AND WITH ALL FAULTS. TI DISCLAIMS ALL OTHER WARRANTIES OR
REPRESENTATIONS, EXPRESS OR IMPLIED, REGARDING TI RESOURCES OR USE THEREOF, INCLUDING BUT NOT LIMITED TO
ACCURACY OR COMPLETENESS, TITLE, ANY EPIDEMIC FAILURE WARRANTY AND ANY IMPLIED WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND NON-INFRINGEMENT OF ANY THIRD PARTY INTELLECTUAL
PROPERTY RIGHTS.
TI SHALL NOT BE LIABLE FOR AND SHALL NOT DEFEND OR INDEMNIFY YOU AGAINST ANY CLAIM, INCLUDING BUT NOT
LIMITED TO ANY INFRINGEMENT CLAIM THAT RELATES TO OR IS BASED ON ANY COMBINATION OF PRODUCTS EVEN IF
DESCRIBED IN TI RESOURCES OR OTHERWISE. IN NO EVENT SHALL TI BE LIABLE FOR ANY ACTUAL, DIRECT, SPECIAL,
COLLATERAL, INDIRECT, PUNITIVE, INCIDENTAL, CONSEQUENTIAL OR EXEMPLARY DAMAGES IN CONNECTION WITH OR
ARISING OUT OF TI RESOURCES OR USE THEREOF, AND REGARDLESS OF WHETHER TI HAS BEEN ADVISED OF THE
POSSIBILITY OF SUCH DAMAGES.
You agree to fully indemnify TI and its representatives against any damages, costs, losses, and/or liabilities arising out of your non-
compliance with the terms and provisions of this Notice.
This Notice applies to TI Resources. Additional terms apply to the use and purchase of certain types of materials, TI products and services.
These include; without limitation, TI’s standard terms for semiconductor products http://www.ti.com/sc/docs/stdterms.htm), evaluation
modules, and samples (http://www.ti.com/sc/docs/sampterms.htm).

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2018, Texas Instruments Incorporated

http://www.ti.com/sc/docs/stdterms.htm
http://www.ti.com/lit/pdf/SSZZ027
http://www.ti.com/lit/pdf/SSZZ027
http://www.ti.com/sc/docs/sampterms.htm

	Code Composer Studio™ IDE 7.1+ for SimpleLink™ MSP432™ Microcontrollers
	1 Installing Code Composer Studio IDE
	2 Updating Code Composer Studio IDE
	3 Creating a Basic SimpleLink MSP432 Project
	4 Importing SimpleLink Examples From TI Resource Explorer
	5 Debugging Your Application
	5.1 Debugger Settings
	5.2 Debugging ROM Driver Library
	5.3 Start Debugging Session
	5.4 Debugger Messages

	6 Using Serial Wire Output (SWO) Hardware Trace Analyzer
	6.1 Configure the Project for SWO Trace
	6.2 Run Serial Wire Trace

	7 EnergyTraceTM Technology
	7.1 Energy Measurement
	7.2 Integration With Code Composer Studio IDE
	7.3 Enabling EnergyTrace Technology and Selecting the Default Mode
	7.4 Controlling EnergyTrace Technology
	7.5 EnergyTrace+ Mode
	7.6 EnergyTrace Mode
	7.7 Comparing Captured Data With Reference Data
	7.8 EnergyTrace Technology FAQs

	8 Device Security (MSP432P4xx Devices Only)
	8.1 Factory Reset Without Password
	8.2 Factory Reset With Password

	9 Low-Power Debug (MSP432P4xx Devices Only)
	10 Frequently Asked Questions
	11 Additional Code Composer Studio IDE Information
	12 References

	Revision History
	Important Notice

