
First Steps

Embedded
Systems

with

ox40;
gs&0x20)
table();

02A4 A
02A6 B
02A9 C

Byte Craft Limited

in
fo

@
b
y
te

c
ra

ft
.c

o
minfo@bytecraft.com

A2-490 Dutton Drive
Waterloo, Ontario

Canada
N2L 6H7

Tel: 519-888-6911
Fax: 519-746-6751

Do Byte Craft Limited compilers
support ANSI C?
All Byte Craft compilers are ANSI compatible within the
limitations of the target hardware.
How efficient is the optimizer
compared to hand-written
assembler code?
The compiler generates object code as tight and
efficient as most hand-written assembler code.
Can I combine C code and
assembler in my programs?
You can embed assembler code within your C program,
using #asm and #endasm preprocessor directives. The
embedded code can call C functions and directly
access C variables. To pass arguments conveniently,
embed your assembly code in the body of a C function.
What kinds of emulator hardware
do the compilers support?
For more information on supported emulator products,
contact Byte Craft Limited support staff.
How do the compilers handle local
variable declarations?
Our compilers store locally-declared variables in
reusable local memory spaces. The scope of local
variables is protected.
What are Byte Craft Limited's
terms?
For Canada and the U.S.: For company purchases (on
approved credit), NET 30 days after shipping. Byte
Craft ships next day FedEx free of charge. All other
orders must be prepaid, with American Express, VISA,
check with order, or direct wire transfer.
For overseas: All orders, prepaid with American
Express, VISA, check with order, or direct wire transfer.
Shipping is extra. Please call for more information.
Please obtain appropriate import documentation.
If for any reason you are unsatisfied with your
purchase, you can return it within 30 days for a full
refund.

CDSCode Development Systems

The Byte Craft Limited Code Development
Systems are high-performance embedded
development packages designed for serious
developers. They generate small, fast, and
efficient code. They enable the professional
developer to produce stand-alone single-chip
microcontroller applications quickly. Developers
can easily port C language applications written
for other embedded platforms to the CDS.

Features
! The Code Development Systems support

entire families of microcontrollers.
! The optimizing C language cross-compilers are

ANSI-compatible within hardware limitations.
! Tight, fast and efficient code optimization

generates clean, customized applications.
! A built-in Macro Assembler allows inline

assembly language in C source.
! CDS generate symbol and source reference

information for C source-level debugging with
popular emulators.
! C language support for interrupt service

routines and direct access to ports.
! Device files for individual parts precisely

control code generation and resource usage.
! Complete user documentation comes with

every Code Development System.
! Absolute Code Mode lets you compile directly

to final code without a separate linking phase.
Alternatively, you can use t

! Demonstration versions are available from:
http://www.bytecraft.com/

Versatility
Code Development Systems install under
Windows 95, 98, ME, NT, 2000, or under MS/PC
DOS.
CDS provide symbol table information and a
listing file: a merged listing of C source and
generated assembly language to permit detailed
analysis.

he BClink
Optimizing Linker. Either method performs a
final optimization pass on an entire program.

www.bytecraft.com

First Steps
with Embedded Systems

by

Byte Craft Limited

BYTE CRAFT LIMITED
A2-490 Dutton Drive
Waterloo, Ontario
Canada N2L 6H7
Telephone: (519) 888-6911
FAX: (519) 746-6751
Email: info@bytecraft.com

http://www.bytecraft.com

Copyright ! 1997, 2002 Byte Craft Limited. Licensed Material. All rights reserved.

First Steps with Embedded Systems is protected by copyrights. All rights reserved. No part of this
publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any
means, electronic, mechanical, photocopying, recording, or otherwise without the prior written
permission of Byte Craft Limited.

All example and program code is protected by copyright.
Printed in Canada 14 November, 2002

i

Table of Contents

1. Introduction 1
1.1 Typographical Conventions... 1
1.2 Explaining the Microcontroller ... 2
1.3 Book Contents ... 3

2. Microcontroller Overview 5
2.1 What is a Microcontroller?... 5
2.2 The Microcontroller in a System... 7
2.3 Architecture ... 7

2.3.1 Von Neumann ..8
2.3.2 Von Neumann Memory Map...8
2.3.3 Harvard ..9
2.3.4 Harvard Memory Map...10
2.3.5 The Central Processing Unit ..11
2.3.6 Central Processing Unit...13
2.3.7 ROM...14
2.3.8 RAM...15
2.3.9 I/O Ports...16
2.3.10 Timer..17
2.3.11 Interrupt Circuitry..18
2.3.12 Buses ..19

2.4 Sample Microcontroller Configurations.. 19
2.4.1 Motorola MC68HC705C8 ..19
2.4.2 National Semiconductor COP8SAA7 ..20
2.4.3 Microchip PIC16C54...20
2.4.4 Microchip PIC16C74...21

Table of Contents

ii

3. The Embedded Environment 23
3.1 The Embedded Difference ..23
3.2 Fabrication Techniques ..24
3.3 Memory Addressing and Types ..24

3.3.1 RAM... 24
3.3.2 ROM.. 25
3.3.3 PROM ... 25
3.3.4 EPROM .. 25
3.3.5 EEPROM ... 26
3.3.6 Flash Memory... 27
3.3.7 Registers .. 27
3.3.8 Scratch Pad ... 28

3.4 Interrupts ...29
3.4.1 Interrupt Handling .. 30
3.4.2 Synchronous and Asynchronous Interrupt Acknowledgement................................. 30
3.4.3 Servicing Interrupts ... 31
3.4.4 Interrupt Detection ... 32
3.4.5 Executing Interrupt Handlers.. 33
3.4.6 Multiple Interrupts .. 34

3.5 Specific Interrupts ...34
3.5.1 RESET .. 35
3.5.2 Software Interrupt/Trap .. 35
3.5.3 IRQ .. 36
3.5.4 TIMER .. 36

3.6 Power ...37
3.6.1 Brownout .. 37
3.6.2 Halt/Idle ... 37

3.7 Input and Output...37
3.7.1 Ports... 37
3.7.2 Serial Input and Output.. 38

3.8 Analog to Digital Conversion ..40
3.9 Miscellaneous .. 41

3.9.1 Digital Signal Processor .. 41
3.9.2 Clock Monitor .. 41

Table of Contents

iii

3.10 Devices... 41
3.10.1 Mask ROM..41
3.10.2 Windowed Parts ...41
3.10.3 OTP..41

4. Programming Fundamentals 43
4.1 What is a Program?.. 43
4.2 Number Systems ... 43
4.3 Binary Information.. 44
4.4 Memory Addressing .. 46
4.5 Machine Language.. 46
4.6 Assembly Language .. 46

4.6.1 Assembler ..47

4.7 Instruction Sets.. 47
4.8 The Development of Programming Languages 48
4.9 Compilers .. 50

4.9.1 The Preprocessor ...50
4.9.2 The Compiler ..50
4.9.3 The Linker ...50

4.10 Cross Development.. 51
4.10.1 Cross compiler..51
4.10.2 Cross development tools ..51
4.10.3 Embedded Development Cycle...52

5. First Look at a C Program 55
5.1 Program Comments... 56
5.2 Preprocessor directives.. 56
5.3 C Functions ... 58

5.3.1 The main() function..58
5.3.2 Calling a Function ..59

Table of Contents

iv

5.4 The Function Body..60
5.4.1 The Assignment Statement .. 60
5.4.2 Control statements .. 60
5.4.3 Calling Functions ... 62

5.5 The Embedded Difference..62
5.5.1 Device Knowledge .. 63
5.5.2 Special Data Types and Data Access.. 63
5.5.3 Program Flow... 63
5.5.4 Combining C and Assembly Language .. 63
5.5.5 Mechanical Knowledge... 64

6. C Program Structure 65
6.1 C Preprocessor Directives..65
6.2 Identifier Declaration ..65

6.2.1 Identifiers in Memory ... 66
6.2.2 Identifier names ... 66
6.2.3 Variable Data Identifiers... 67
6.2.4 Constant Data Identifiers ... 67
6.2.5 Function Identifiers... 68

6.3 Statements ...68
6.3.1 The Semicolon Statement Terminator ... 69
6.3.2 Combining Statements in a Block... 69

7. Basic Data Types 71
7.1 The ASCII Character Set ... 71
7.2 Data types .. 71
7.3 Variable Data Types ..72

7.3.1 Variable Data Type Memory Allocation .. 72
7.3.2 Variable Scope.. 73
7.3.3 Global Scope .. 74
7.3.4 Local Scope... 74
7.3.5 Declaring Two Variables with the Same Name.. 74
7.3.6 Why Scope is Important... 75

7.4 Function Data Types...75
7.4.1 Function Parameter data types .. 76

Table of Contents

v

7.5 The Character Data Type.. 76
7.5.1 Assigning a character value...76
7.5.2 ASCII Character Arrangement ..77
7.5.3 Numeric Characters ...77
7.5.4 Escape Sequences...77

7.6 Integer Data Types.. 78
7.6.1 Integer Sign Bit ...78
7.6.2 The short Data Type ...78
7.6.3 The long Data type ..79
7.6.4 Different Notations ...79

7.7 Data Type Modifiers ... 79
7.7.1 Signed and Unsigned ...80
7.7.2 Other Data Type Modifiers..80

7.8 Real Numbers ... 80
7.8.1 The float Data Type...81
7.8.2 The double and long double Types...81
7.8.3 Assigning an Integer to a float ...81

8. Operators and Expressions 83
8.1 Operators ... 83
8.2 C Expressions.. 84

8.2.1 Binding...85
8.2.2 Unary Operators...85
8.2.3 Binary Operators ..85
8.2.4 Trinary Operator ..86
8.2.5 Operator Precedence ...86
8.2.6 The = Operator ..87

8.3 Arithmetic Operators... 88
8.3.1 Increment and Decrement Operators ..89

8.4 Assignment Operators... 90
8.5 Comparison Operators .. 91

8.5.1 Expressing True and False..91
8.5.2 The Equality Operators...92
8.5.3 Relational Operators..92
8.5.4 Logical Operators...93

Table of Contents

vi

8.6 Bit Level Operators..95
8.6.1 Bit Logical Operators.. 95
8.6.2 Bit shift operators .. 97

9. Control Structures 99
9.1 Conditional Expressions..99
9.2 Decision Structures.. 100

9.2.1 if and else Statements.. 100
9.2.2 Nested if statements.. 101
9.2.3 Matching else and if... 102
9.2.4 switch and case... 103
9.2.5 Execution within a switch .. 103
9.2.6 Fall-through execution.. 104
9.2.7 The default case ... 105
9.2.8 The goto Statement ... 105
9.2.9 Comparing goto and switch..case.. 106

9.3 Looping Structures .. 106
9.3.1 Control expression .. 106
9.3.2 The while loop.. 107
9.3.3 The do loop .. 107
9.3.4 The for loop.. 108
9.3.5 How the for loop works ... 108

9.4 Exiting a Loop... 109
9.4.1 The break Statement ... 109
9.4.2 The continue Statement.. 109

10. Functions 111
10.1 main() .. 111
10.2 Executing a Function ... 111

10.2.1 Calling a Function.. 112

10.3 Function Prototype Declarations..113
10.3.1 Defining the Function Interface ... 113
10.3.2 Calling Functions in Other Files ... 113
10.3.3 Function Type, Name and Parameter List .. 114
10.3.4 Functions and void.. 115

Table of Contents

vii

10.4 Function Definitions...116
10.4.1 Statement Block..116
10.4.2 Variable Declarations in Function Definitions ...116

10.5 Function Parameters...117
10.5.1 Passing Data by Value ...117
10.5.2 Passing Data by Reference ...117
10.5.3 Functions Without Parameters ..118

11. Complex Data Types 121
11.1 Pointers..121

11.1.1 Declaring a Pointer ..121
11.1.2 Pointer Operators ..122
11.1.3 Pointer Pitfalls ..123

11.2 Arrays ..124
11.2.1 Accessing Array Elements ..124
11.2.2 Multidimensional Arrays ...125
11.2.3 Array Operations and Pointer Arithmetic ...125
11.2.4 Arrays of Pointers ..126

11.3 User Defined Data Types ...127
11.3.1 Using typedef to Define New Data Types...127
11.3.2 Using types defined with typedef ..128

11.4 Enumerated Types..128
11.4.1 Enumerated Type Elements...129
11.4.2 Enumerated Type Value Checks ...129
11.4.3 Specifying Values for Enumerated Elements..130

11.5 Structures ..131
11.5.1 The structure tag ..131
11.5.2 Using typedef to Define a Structure ...132
11.5.3 Accessing Structure Members..132
11.5.4 Indicating a Field with the Dot Operator ..132
11.5.5 Indicating a Field with the Structure Pointer ..133
11.5.6 Bit Fields in Structures ..133
11.5.7 Storing bit fields in memory...134
11.5.8 The behaviour of bit fields ...134

11.6 Unions ...135
11.6.1 Retrieving a Union Element...136

Table of Contents

viii

11.6.2 Using Unions with Incompatible Variables .. 137

12. Storage and Data Type Modifiers 139
12.1 Storage Class Modifiers.. 139

12.1.1 External linkage.. 139
12.1.2 Internal linkage... 139
12.1.3 No linkage... 140
12.1.4 The extern Modifier .. 140
12.1.5 Global Variables and extern... 141
12.1.6 The static Modifier .. 142
12.1.7 The visibility of static variables ... 142
12.1.8 The register Modifier .. 143
12.1.9 The auto Modifier.. 144

12.2 Data Type Modifiers .. 145
12.2.1 Value Constancy Modifiers: const and volatile... 145
12.2.2 Allowable Values Modifiers: signed and unsigned... 146
12.2.3 Size Modifiers: short and long... 146
12.2.4 Pointer Size Modifiers: near and far ... 147
12.2.5 Using near and far pointers.. 148
12.2.6 Default pointer type .. 148

13. The C Preprocessor 151
13.1 Preprocessor Directive Syntax ..151
13.2 White Space in the Preprocessor ... 152
13.3 File Inclusion ... 152

13.3.1 File Inclusion Searches ...153

13.4 Defining Symbolic Constants .. 153
13.4.1 The #undef directive ..154
13.4.2 Defining “empty” symbols .. 155

13.5 Defining Macros .. 155
13.5.1 Macro Expansion... 156
13.5.2 # and ## Operators ... 157

13.6 Conditional Source Code ... 157
13.6.1 #if and #endif.. 157
13.6.2 The defined() Function.. 158

Table of Contents

ix

13.6.3 The #else and #elif Directives ..158
13.6.4 #ifdef and #ifndef ...159

13.7 Producing Error messages ...159
13.8 Defining Target Hardware ...160
13.9 In-line Assembly Language..160

13.9.1 The #asm and #endasm Directives..160

14. Libraries 161
14.1 Portable Device Driver Libraries ..161
14.2 An Example Development Scenario...162

14.2.1 How SPI Works ...163
14.2.2 SPI_set_master(ARGUMENT); ...164
14.2.3 SPI_send_rec(0,4); ...166

14.3 Device Driver Library Summary...168

15. Sample Project 169
15.1 Project Specifics ..169
15.2 Project Foundations..169

15.2.1 Asynchronous...169
15.2.2 SCI ..170
15.2.3 RS-232..170

15.3 Electrical Specifications ...171
15.4 PIC Implementation...171

15.4.1 Anatomy of a PC serial port...171
15.4.2 A Note On Chip Sets ..172
15.4.3 IRQ...172

15.5 Programming Interrupts...177
15.6 The Sample Project Code ...179

15.6.1 PIC16C74 Code..179
15.6.2 PC Code...180

Table of Contents

x

16. C Precedence Rules 185

17. ASCII Chart 187

18. Glossary 189

19. Bibliography 197

20. Index 198

xi

Table of Examples
Example 1: Defining ports with #pragma directives...17
Example 2: Using a union structure to create a scratch pad...28
Example 3: Using globally allocated data space in a function ..29
Example 4: A typical assembly language program for the COP8SAA................................49
Example 5: Program in Example 4 compiled for the 68HC705C849
Example 6: A typical microcontroller program ..55
Example 7: Syntax for the main() function ..59
Example 8: Using the C assignment statement...60
Example 9: The if statement syntax..61
Example 10: Nesting if and while statements ...62
Example 11: Calling one function from another ..62
Example 12: C functions containing inline assembly language ..64
Example 13: Common C keywords..66
Example 14: Using braces to delineate a block...70
Example 15: The while loop..70
Example 16: Declaring variable types ..72
Example 17: Assigning a character value...76
Example 18: Octal, hex and binary notation...79
Example 19: Data type modifiers..80
Example 20: Postfix and prefix unary operators ..85
Example 21: Sample binary operators..85
Example 22: Trinary conditional operator...86
Example 23: Combining operators in a statement ...86
Example 24: Concatenating expressions with the comma operator....................................87
Example 25: Combining assignment operators in statements..87
Example 26: Addition, subtraction and multiplication operators ..88
Example 27: Division and modulus operators..88
Example 28: Differentiating the division and modulus operators88
Example 29: Prefix and postfix notation for increment and decrement.............................89
Example 30: Postfix increment and decrement ..89
Example 31: Using prefix increment and decrement...90
Example 32: Variations on the assignment statement ...91
Example 33: Defining constant values for true and false..91
Example 34: Defining constant values for true and false in a portable way.......................92

Table of Examples

xii

Example 35: Using the equality operator in control structures ..92
Example 36: The inequality operator..92
Example 37: Logical NOT and AND operators ..93
Example 38: Using the or operator...94
Example 39: Sort circuit expression evaluation ..94
Example 40: Using short-circuit evaluation...94
Example 41: Bitwise AND operation using &..95
Example 42: Using the AND bitwise operator with binary values96
Example 43: Using the bitwise OR operator | ...96
Example 44: The bitwise XOR operator ...96
Example 45: The bitwise NOT operator ...97
Example 46: Shifting bits left and right..97
Example 47: Controlling loops without using logical operators 100
Example 48: if and else structure ... 100
Example 49: Using the if statement structure .. 100
Example 50: The else statement... 101
Example 51: Nesting if statements... 101
Example 52: Converting nested if statements to logical expressions 102
Example 53: Matching if and else statements .. 102
Example 54: Using braces to clarify the combination of if and else................................. 102
Example 55: An alternate format for showing if else pairing .. 103
Example 56: The switch..case structure .. 103
Example 57: Using the fall-through effect with switch statements................................... 104
Example 58: Multiple case enhancement.. 105
Example 59: Using the default case value... 105
Example 60: The goto statement ... 106
Example 61: The while loop syntax... 107
Example 62: The do loop syntax.. 107
Example 63: Comparing the while and for loops .. 108
Example 64: Using the for loop ... 108
Example 65: Comparing function and variable declarations ... 114
Example 66: The function statement block.. 116
Example 67: Variable declarations inside functions .. 116
Example 68: Passing data to a function by value... 117
Example 69: Passing a variable to a function by address (reference) 118
Example 70: Using the address of operator.. 122
Example 71: Using the pointer dereference operator ... 123

Table of Examples

xiii

Example 72: Dereferencing a pointer set to NULL...123
Example 73: Initializing a pointer ...124
Example 74: Array operations and pointer arithmetic...125
Example 75: The relationship between arrays and pointers ...126
Example 76: Declaring and initializing an array of pointers ...127
Example 77: Using typedef to define a new data type...127
Example 78: Defining a new enumerated type ...128
Example 79: Declaring multiple variables of the same enumerated type129
Example 80: Enumerated types as integer values...129
Example 81: Testing the value of an enumerated type..129
Example 82: Specifying integer values for enumerated elements130
Example 83: Specifying a starting value for enumerated elements130
Example 84: The assignment of integer values to an enumerated list...............................130
Example 85: Declaring the template of a structure..131
Example 86: Declaring a structure without a tag..131
Example 87: Using typedef to clarify structure declaration ..132
Example 88: Accessing elements in a structure ..132
Example 89: A structure accessed with a pointer...133
Example 90: Bit fields in structures ..134
Example 91: Accessing bit fields...134
Example 92: Compiler dependant storage of bit fields ...134
Example 93: Declaring a union ...135
Example 94: Using typedef to declare a union ...135
Example 95: Using a union to create a scratch pad ...136
Example 96: Using a union to access data as different types..136
Example 97: Accessing a union element with the dot operator...136
Example 98: Using the right arrow operator to access a union member..........................136
Example 99: Returning the low Byte of a word..137
Example 100: Returning a specific part of a word for little endian137
Example 101: Incompatible variables with different storage methods in unions............138
Example 102: Restricting a function’s scope by declaring it as extern..............................141
Example 103: Using preprocessor directives to declare extern global variables..............142
Example 104: Using the static data modifier to restrict the scope of variables142
Example 105: Using static variables to track function depth..143
Example 106: Using the register data type modifier ..143
Example 107: Using the auto data modifier ..144
Example 108: The far pointer type as default ...149

Table of Examples

xiv

Example 109: Nesting preprocessor directives .. 151
Example 110: Redefining a constant using #undef... 155
Example 111: Defining and calling a macro... 156
Example 112: Using #if and #endif to conditionally compiler code 157
Example 113: Using expressions in #if directives for conditional compilation 158
Example 114: Using the defined() function for conditional compilation 158
Example 115: Using !defined() to test if a symbol has not been defined......................... 158
Example 116: Using #else and #elif to choose between compilation blocks................. 159
Example 117: Using #elif, #if and #endif for conditional compilation.......................... 159
Example 118: Using #ifdef and #ifndef... 159
Example 119: Using the #error directive.. 160
Example 120: Master function for PIC16C74 SPI communication 163
Example 121: Setting up the SPI on the Microchip PIC16C74 .. 165
Example 122: Setting up SPI on the Motorola 68HC705C8 ... 165
Example 123: Setting up SPI on the National COP8SAA7... 166
Example 124: Initiating SPI send/receive on the Microchip PIC16C74 167
Example 125: Initiating SPI send/receive on the Motorola 68HC705C8 167
Example 126: Initiating SPI send/receive on the National COP8SAA7......................... 168
Example 127: Serial port connection example for the PIC16C74 180
Example 128: Serial port connection example for the PC ... 182

xv

Table of Figures
Figure 1: The microcontroller..7
Figure 2: Von Neumann memory map for the MC68705C8 ...9
Figure 3: Harvard memory map PIC16C74 ..10
Figure 4: Harvard memory map COP8SAA7 ...11
Figure 5: Instruction clocking on the PIC16C54..12
Figure 6: The CPU ..13
Figure 7: MC68HC705C8 stack ..15
Figure 8: Saving the machine state on the MC68HC705C8 ...33
Figure 9: Data storage VS. data value...45
Figure 10: RS-232 signal ...170
Figure 11: Project schematic ..182

xvii

Table of Tables
Table 1: Hardware characteristics of the Motorola MC68HC705C820
Table 2: Hardware characteristics of the National Semiconductor COP8SAA7...............20
Table 3: Hardware characteristics of the Microchip PIC16C54...21
Table 4: Hardware characteristics of the Microchip PIC16C74...21
Table 5: Sample vectored interrupts ...32
Table 6: Binary, decimal and hexadecimal ...44
Table 7: Interpretation of assembly language..47
Table 8: Instruction set comparisons..48
Table 9: Pointers and pointers-to-pointers ..122
Table 10: PC serial port addresses and interrupts...171
Table 11: UART chips ..172
Table 12: COM port registers ..173
Table 13: Interrupt enable register bits ..174
Table 14: Interrupt identification register ..175
Table 15: FIFO control register ..175
Table 16: Line Control Register ..176
Table 17: Modem Control Register ..176
Table 18: Line Status Register..177
Table 19: Modem Status Register..177
Table 20: Pin outs on the RS232 port ..183
Table 21: Rules of operator precedence...185
Table 22: ASCII characters ..187

xix

Acknowledgements

This book represents the hard work of many people at Byte Craft Limited. We
want to offer as much of our experience as possible to those entering the
Embedded Systems field. We are leveraging our experience in embedded
systems, in technical communication, and in publishing to bring about
informative publications that do just that.

Kirk Zurell edited this publication and designed the cover art.

1

1. Introduction
This book is intended to fill the need for an intermediate level overview of
programming microcontrollers using the C programming language. It is aimed
specifically at two groups of readers who have different, yet overlapping needs.

!!!! The first group are familiar with C but require an examination of the general
nature of microcontrollers: what they are, how they behave and how best to use
the C language to program them.

"""" The second group are familiar with microcontrollers but are new to the C
programming language and wish to use C for microcontroller development
projects.

First Steps with Embedded Systems will be useful both as an introduction to
microcontroller programming for intermediate level post-secondary programs
and as a guide for developers coping with the growth and change of the
microcontroller industry.

1.1 Typographical Conventions

Bold is used to indicate key terms.

Italic is used for emphasis and to denote references to documents.
Courier is used for sample code and code excerpts.
Courier
Italic

is used to indicate place holders in user input or in output produced by the
software. For example, the filename START.ext has an italicised
extension which indicates that the file can have any valid extension.

_ _ the double underscore contains a small space to display both characters.
Do not type the space in the double underscore character in your code.

is used within one section to refer to another section on a related topic.

NOTE
An important note will appear in this way.

0x is used to denote a hexadecimal number. For example: 0xFFF

0b is used to denote a binary number. For example: 0b010101

Introduction

2

1.2 Explaining the Microcontroller

Instead of presenting a detailed examination of a specific microcontroller or
microcontroller family, First Steps with Embedded Systems explains concepts which
are common to most 8 bit microcontrollers. This book will focus on several
specific parts for example purposes. These include Motorola’s MC68HC705C8,
National Semiconductor’s COP8SAA7 and Microchip’s PIC16C54 and
PIC16C74.

The industry provides a large array of speciality microcontroller configurations
with optional features and feature combinations. However, many 8 bit
microcontrollers have a common underlying architecture. This book examines
this common architecture and guides you through the issues you need to
understand in order to program a microcontroller. Learning common
microcontroller architecture has several important advantages:

$$$$ You will not be overwhelmed by details
Microcontrollers have a set of common, general features. These general features
form an essential preliminary foundation for learning specific microcontroller
implementations. Variations, options and specific implementations offered by
various microcontrollers are also included for example purposes.

$$$$ You will learn the basics of portability
One advantage of using C to program microcontrollers is program portability.
Each microcontroller has an individual instruction set and assembly language.
Modifying assembly language code so a program written for one
microcontroller will run on a different microcontroller is very time consuming
and effort intensive.

Writing C code that supports general microcontroller features helps to avoid
portability problems. Details relating to specific hardware implementations can
be placed in separate library functions and header files. Using C library
functions and header files ensures that application source code can be re-
compiled for different microcontroller targets.

$$$$ You can spend more time on algorithm design and less on
implementation

C is a high level language. You will be able to program your applications quickly
and easily using C. C’s breadth of expression is concise and powerful; therefore,

 Book Contents

3

each line of code written in C can replace many lines of assembly language.
Debugging and maintaining code written in C is much easier than in assembly
language code.

1.3 Book Contents

Section 2, Microcontroller Overview, describes the standard microcontroller
and covers the basic components of a microcontroller.

Section 3, The Embedded Environment, describes basic microcontroller
concepts such as input, output, interrupts, timing and memory.
Section 4, Programming Fundamentals, includes brief explanations of basic
topics such as number systems, languages and development tools.

Section 5, First Look at a C Program, provides a sample C program and then
examines the basic components represented by the example.

Section 6, C Program Structure, covers the main components of a C program:
directives, identifiers and statements.

Section 7, Basic Data Types, covers the different data types and how to use
them with variables and functions.

Section 8, Operators and Expressions, covers arithmetic, assignment,
comparison and bit level C operators and expressions.

Section 9, Control Structures, covers conditional expressions and decision and
looping structures.

Section 10, Functions, covers defining, prototyping, calling and declaring C
functions. This section also examines function parameters.

Section 11, Complex Data Types, covers pointers, arrays, user defined types,
enumerated types, structures and bitfields.

Section 12, Storage and Data Type Modifiers, covers modifiers which specify
location, value, size, and sign of data types.

Section 13, The C Preprocessor, covers C preprocessor directives and related
issues such as file inclusion, target hardware definition, conditional compilation,
and inline assembly.

Section 14, Libraries, describes the standard embedded systems libraries.

Introduction

4

Section 15, Sample Project, follows the development of a small sample
microcontroller project

5

2. Microcontroller Overview
This section provides a brief overview of general microcontroller features and
resources. It is designed to familiarise you with microcontroller terminology and
basic microcontroller architecture. Many of the concepts introduced in this
section will be revisited throughout the book.

2.1 What is a Microcontroller?

A microcontroller is a single chip, self-contained computer which incorporates
all the basic components of a personal computer on a much smaller scale.
Microcontrollers are often referred to as single chip devices or single chip
computers. The main consequence of the microcontroller’s small size is that its
resources are far more limited than those of a desktop personal computer.

In functional terms, a microcontroller is a programmable single chip which
controls a process or system. Microcontrollers are typically used as embedded
controllers where they control part of a larger system such as an appliance,
automobile, scientific instrument or a computer peripheral. Microcontrollers are
designed to be low cost solutions; therefore using them can drastically reduces
part and design costs for a project.

Physically, a microcontroller is an integrated circuit with pins along each side.
The pins presented by a microcontroller are used for power, ground, oscillator,
I/O ports, interrupt request signals, reset and control. In contrast, the pins
exposed by a microprocessor are most often memory bus signals (rather than
I/O ports).

NOTE
A microcontroller is not the same as a microprocessor. A microprocessor is a
single chip CPU used within other computer systems. A microcontroller is itself a
single chip computer system.

Personal computers are used as development platforms for microcontroller
projects. Development computers, usually personal or workstation computers,
use a microprocessor as their principle computing engine. Microprocessors
depend upon a variety of subsidiary chips and devices to provide the resources
not available on the microprocessor. Additional chips required with a

Microcontroller Overview

6

microprocessor support memory storage, input/output control and specialized
processing.

A development platform is required to run embedded system development
software such as assemblers, compilers, editors and simulators which require
the processing power and memory capabilities of a desktop personal computer
or workstation.

The target platform is the platform on which the finished program will be run.
For example, consider a developer who is creating a program for a Motorola
68HC705C8 microcontroller. The developer writes, edits, and tests the program
on a Pentium 133 personal computer: the development platform. The
developer will use software which runs on a Pentium 133 but whose target
device is the 68HC705C8. When the program is ready it is programmed in the
target platform, the 68HC705C8.

A microcontroller has seven main components:

!!!! Central processing unit (CPU)
"""" ROM
%%%% RAM
&&&& Input and Output
'''' Timer
((((Interrupt circuitry
)))) Buses

 The Microcontroller in a System

7

Figure 1: The microcontroller

2.2 The Microcontroller in a System

Microcontrollers do not function in isolation. As their name suggests they are
designed to control other devices. The microcontroller can accept inputs from
some devices and provide outputs to other devices within any given system. For
example, a microcontroller may accept input from a switch and may send
output to an LED. If the switch is pressed the microcontroller can be
instructed to illuminate the LED.

The microcontroller is often part of a larger system. For example, the switch
and LED may be part of a compact disc player in a car stereo system. When a
microcontroller is part of a larger system it is often referred to as an embedded
controller because it is embedded within the larger system.

2.3 Architecture

There are two basic types of architecture: Harvard and Von Neumann.
Microcontrollers most often use a Harvard or a modified Harvard-based
architecture.

Microcontroller Overview

8

2.3.1 Von Neumann

Von Neumann architecture has a single, common memory space where both
program instructions and data are stored. There is a single data bus which
fetches both instructions and data. Each time the CPU fetches a program
instruction it may have to perform one or more read/write operations to data
memory space. It must wait until these subsequent operations are complete
before it can fetch and decode the next program instruction. The advantage to
this architecture lies in its simplicity and economy.

NOTE
On some Von Neumann machines the program can read from and write to CPU
registers, including the program counter. This can be dangerous as you can point
the PC at memory blocks outside program memory space. Careless PC
manipulation can cause errors which require a hard reset.

2.3.2 Von Neumann Memory Map

Every microcontroller has a very specific layout for its memory. Usually this is
depicted with the help of a memory map. A memory map is a diagram which
shows how the microcontroller memory is used. The following example map is
from the Motorola MC68HC705C8 microcontroller configured for 176 bytes of
RAM and 7744 bytes of PROM:

 Architecture

9

 Contents Address
 I/O 32 bytes 0x0000

0x001F
 User Prom 48 bytes 0x0020

0x004F
 176 Bytes of RAM 0x0050

0x00BF
 STACK 0x00C0

0x00FF
 User PROM 96 bytes 0x0100

0x015F
 User PROM 7584 bytes 0x0160

0x1EFF

 Boot ROM 223 bytes 0x1F00
0x1FDE

 Option Register 0x1FDF
 Boot ROM vectors 16 bytes 0x1FE0

0x1FEF
 Unused 4 bytes 0x1FF3
 User PROM vectors 12 bytes 0x1FF4

0x1FFF
Figure 2: Von Neumann memory map for the MC68705C8

2.3.3 Harvard

Harvard architecture computers have separate memory areas for program
instructions and data. There are two or more internal data buses which allow
simultaneous access to both instructions and data. The CPU fetches
instructions on the program memory bus. If the fetched instruction requires an
operation on data memory, the CPU can fetch the next program instruction
while it uses the data bus for its data operation. This speeds up execution time
at the cost of more hardware complexity.

Since Harvard machines assume that only instructions are stored in program
memory space, how do you write and access data stored in program memory
space? For example, a data value declared as a C constant must be stored in
ROM as a constant value. Different microcontrollers have different solutions to
this problem. A good C compiler automatically generates the code to suit the
target hardware’s requirements.

Some chips have special instructions allowing the retrieval of information from
program memory space. These instructions are always more complex or
expensive than the equivalent instructions for fetching data from data memory.

Microcontroller Overview

10

Typically these chips have a register analogous to the program counter (PC)
which refers to addresses in program space. Also, some chips support the use
of any 16 bit value contained in data space as a pointer into the program
address space. These chips have special instructions to use these data pointers.

NOTE
It is important that you understand how your Harvard architecture part deals with
data in program space. It is possible to generate more efficient code using symbolic
constants declared with #define directives instead of declared constants. You may
also create global variables for constant values.

2.3.4 Harvard Memory Map

The following memory map is from the Microchip PIC16C74. Notice that
program memory is paged and data memory is banked. The stack is
implemented in hardware and the developer has no access to it.

Program Memory (4K) Data Memory (256 bytes)
 Bank 0 Bank 1

Reset Vector 0x0000 Program 0x00 0x80
 Counter Specific Specific
 Registers Registers

Interrupt Vector 0x0004 8
Program Memory 0x0005 Level

Page 0 0x07FF Stack
Program Memory 0x0800

Page 1 0x0FFF 0x1F 0x9F
Unimplemented 0x1000 0x20 General General 0xA0

 Purpose Purpose
 0x1FFF 0x7F Register Register 0xFF

Figure 3: Harvard memory map PIC16C74

The following is the memory map for the COP8SAA7. The stack grows down
from the top of general purpose RAM.

 Architecture

11

Program Memory (1024
bytes)

 Data Memory (64 bytes)

 0x000 Program 0x00
 Counter General Purpose
 RAM

 0x2F
 Unused RAM 0x30
 0x7F
 0x80

Interrupt Vector 0x0FF Specific
 Registers
 0xFE

 0x400 Segment Register 0xFF
Figure 4: Harvard memory map COP8SAA7

2.3.5 The Central Processing Unit

The central processing unit (CPU) does all the computing: it fetches, decodes
and executes program instructions and directs the flow of data to and from
memory. The CPU performs the calculations required by program instructions
and places the results of these calculations, if required, into memory space.

Most CPUs are synchronous. This means that they depend on the cycles of a
processor clock. A clock generates a high-frequency square wave usually
driven by a crystal, a RC (resistor capacitor) or an external source. The clock is
sometimes referred to as an oscillator. The clock speed, or oscillation rate, is
measured in megahertz (MHz) which represents one million cycles/second. For
example, if the clock speed is 3 MHz then there are 3,000,000 clock
cycles/second.

Clock configurations are microcontroller dependant. The following are some
sample clock configurations:

"# The National Semiconductor COP8SAA7 has four clock options: crystal
with bias resistor, crystal without bias resistor, R/C, and external. The
option is selected with bits 3 and 4 of the ECON register. The CK1 and
CK0 pins are used for clock related input and output.

"# The Motorola MC68HC705C8 has two pins, OSC1 and OSC2, which
provide connections for an on-chip oscillator. A crystal, ceramic resonator,
or external signal can be attached to the pins. The oscillator frequency is

Microcontroller Overview

12

two times the internal bus rate and the processor clock cycle is two times
the oscillator frequency.

"# The Microchip PIC16C54 has clock input pin OSC1/CLKIN and clock
output pin OSC2/CLKOUT. OSC1/CLKIN is internally divided by four
to generate four clocks. There are four possible modes: low power crystal,
crystal/resonator, high speed crystal, resistor/capacitor.

The clock controls the sequence of instructions. Most microcontrollers divide
their basic clock frequency to arrive at a bus-rate clock. Each instruction takes a
specific number of bus-rate clock cycles in order to execute. The following
depicts the clocking scheme for the Harvard architecture Microchip PIC16C54:

 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4
OSC
1

Q1

Q2

Q3

Q4

PC PC PC + 1 PC + 2

OSC
2

 Fetch Instruction (PC)
 Execute Instruction (PC-1) Fetch Instruction (PC+1)
 Execute Instruction (PC) Fetch Instruction (PC+2)
 Execute Instruction (PC+1)

Figure 5: Instruction clocking on the PIC16C54

 Architecture

13

2.3.6 Central Processing Unit

Figure 6: The CPU

One part of the CPU is responsible for performing calculations and executing
instructions. This part is called the arithmetic logic unit, or ALU. There are a
variety of subsidiary components which support the ALU. These components
include the decoder, the sequencer and a variety of registers.

The decoder converts instructions stored in program memory into codes
which the ALU can understand. The sequencer manages the flow of data
along the microcontroller’s data bus. Registers are used by the CPU to
temporarily store vital data which are volatile: they can change during program
execution. Most microcontroller registers are memory-mapped, associated with
a memory location, and can be used like any other memory location.

Microcontroller Overview

14

Registers store the state of the CPU. If the contents of microcontroller memory
and the contents of these registers are saved it is possible to suspend program
operation for an indefinite period of time and restart exactly in the state when
the program was suspended.

The number and names of registers varies drastically among microcontrollers.
However there are certain registers which are common to most
microcontrollers, although the names may vary. These include:

"# The stack pointer
 The stack pointer contains the address of the next location on the stack.

The address in the stack pointer is decremented when data is pushed on the
stack and incremented when data is popped from the stack.

"# The index register
 The index register is used to specify an address when certain addressing

modes are used. It is also known as the pointer register. The Microchip
devices use the name FSR (file select register).

"# The program counter
 Perhaps the single most important CPU register is the program counter

(PC). The PC holds the address of the next instruction in program memory
space. It contains the address of the next instruction the CPU will process.
As each instruction is fetched and processed by the ALU, the CPU
increments the PC and thereby steps through the program stored in the
program memory space.

"# The accumulator
 The accumulator is a register that can hold operands or results of

operations as necessary. The Microchip devices use the name W (working)
register.

Other registers may reflect results from the instruction just executed, control
the options available on the device, and enable access to certain areas of
memory.

2.3.7 ROM

ROM, read only memory, is non-volatile memory used for program
information and permanent data. The microcontroller uses ROM memory
space to store program instructions it will execute when it is started or reset.
Program instructions must be saved in non-volatile memory so that they are not

 Architecture

15

affected by loss of power. The microcontroller usually cannot write data to
program memory space.

2.3.8 RAM

RAM, random access memory, is used to write and read data values as a
program runs. RAM is volatile: if you remove the power supply its contents are
lost. Any variables used in a program are allocated from RAM.

The time to retrieve information from RAM does not depend upon the location
of the information because RAM is not sequential, hence the term random
access.

Most small microcontrollers provide very little RAM which forces you to write
applications that use RAM wisely. Manipulating large data structures and using
pointers, re-entrant or recursive functions use large amounts of RAM and are
techniques which are generally avoided on microcontrollers.

Some C instructions which are rarely used on larger platforms are more
commonly used in C programs for microcontrollers. One example is the goto
instruction reviled by traditional C programmers. While goto is rarely used on
larger platforms, in embedded system programming it can sometimes be used
to save RAM.

If your hardware supports a stack, the stack contents and the space required to
manage the stack are usually allocated from RAM. A stack is a structure which
records the chronological ordering of information. It is used mainly in
subroutine calls and interrupt servicing. A stack is a LIFO (last in, first out)
structure. The following stack is from the Motorola MC68HC705C8. The stack
is 64 bytes from address 00C0 to 00FF:

0x00C0

 Stack pointer
 bit number 5 4 3 2 1 0
0x00FF 0 0 0 0 0 1 1 address

Figure 7: MC68HC705C8 stack

The stack pointer contains the address of the next free location on the stack.
On reset the stack pointer for the MC68HC705C8 holds the value 00FF. The
stack pointer is decremented when data is pushed on the stack and incremented
when data is popped from the stack.

Microcontroller Overview

16

2.3.9 I/O Ports

There are two main port types, parallel and serial, and two port modes,
synchronous and asynchronous. Parallel I/O requires a data line for each bit,
while serial I/O uses a single line and transfers bits in sequence. Synchronous
I/O is synchronised to a clock while asynchronous I/O is not. Microcontrollers
most often have parallel I/O capability built in and serial I/O as a peripheral
feature.

The following are some sample port configurations:

"# The COP8SAA7 has four bidirectional 8 bit I/O ports called C, G, L and F
where each bit can be either input, output or tristate. Each port has an
associated configuration register and data register. It also has a
MICROWIRE/PLUS synchronous serial interface

"# The Motorola MC68HC705C8 has 3 8 bit ports called A, B, and C which
can be either inputs or outputs depending on the value of the data direction
register (DDR). There is also a 7 bit fixed input port called port D which is
used for serial port programming. This device also has a SCI (serial
communications interface) asynchronous serial interface and a SPI (serial
peripheral interface) which both use Port D for their functions.

"# The Microchip PIC16C74 has five ports: PORTA through PORTE. Each
port has an associated TRIS register which controls the direction. PORTA
uses the register ADCON1 to select analog or digital configuration.
PORTD and PORTE can be configured as an 8 bit parallel slave port. The
PIC16C74 has a SSP (synchronous serial port) module which can operate
both in SPI and I2C modes. The device also has a SCI module

Serial ports have a frequency of operation called their baud rate. The baud rate
is the reciprocal of the transmission time for each bit. For example, if the baud
rate is 9600 bits/second then the transmission time for each bit is 1

9600 of a
second.

While microcontrollers do not support the same sophisticated input/output
functions as larger platforms, such as those in the C stdio library, they still
support device I/O. The input/output channels allow the microcontroller to
communicate with such peripheral devices as timers, sensors, keypads and LCD
screens.

Microcontroller ports are usually memory-mapped and can therefore be used
like any other memory location. Ports usually consist of 8 or fewer bits which

 Architecture

17

often support tristate logic with three states: input, output or high
impedance. High impedance mode is the state of being undefined or floating.
Some devices only support binary logic and in those cases the bit can be
defined as a combination of only two of the three states. If a port has
programmable input and output it will also have an associated register which
specifies whether the data is input or output. On many devices this register is
called the DDR (data direction register).

To reserve memory-mapped port locations so your compiler does not use them
for data memory allocation, you can use a #pragma preprocessor directive to
specify the location of each mapped I/O register. This also allows you to
provide a useful mnemonic name for each I/O port. You can then use the
variable name associated with the port to read or write to a particular I/O port.
The following defines two ports and their associated direction registers on the
Motorola 68HC705C8:

#pragma portrw PORTA @ 0x0000;
#pragma portrw PORTB @ 0x0001;
#pragma portrw DDRA @ 0x0004;
#pragma portrw DDRB @ 0x0005;

Example 1: Defining ports with #pragma directives

It is then possible to write the value AC to the port using the C command:
DDRA=0xFF; //set the direction to output
PORTA=0xAC; //set the port to the value AC

2.3.10 Timer

A timer is a counter that is incremented at a fixed rate when the system clock
pulses. There are several different types of timers available. A timer/counter
can perform several different tasks. The CPU uses the timer to keep track of
time accurately. The timer can generate a stream of pulses or a single pulse at
different frequencies. It can be used to start and stop tasks at desired times.

A COP (computer operating properly) or watchdog timer checks for runaway
code execution. The hardware implementation of watchdog timers varies
considerably between different processors. In general watchdog timers must be
turned on once within the first few cycles after reset and then reset periodically
with software. Some watchdog timers can programmed for different time-out
delays. The reset sequence is sometimes as simple as a specialized instruction or
as complex as sending a sequence of bytes to a port. Watchdog timers either
reset the processor or execute an interrupt when they time out.

Microcontroller Overview

18

Timer configurations vary among microcontrollers. the following are some
sample configurations:

"# National Semiconductor’s COP8SAA7 has a 16 bit timer called T1, a 16 bit
idle timer called T0 and a watchdog timer. The idle timer T0 helps to
maintain real time and low power during the IDLE mode. The timer T1 is
used for real time controls tasks with three user-selectable modes.

"# The Motorola MC68HC705C8 has a 16 bit counter and a COP watchdog
timer.

"# The Microchip PIC17C42a has four timer modules called TMR0, TMR1,
TMR2 and TMR3, and a watchdog timer. TMR0 is a 16 bit timer with
programmable prescalar, TMR1 and TMR2 are 8 bit timers and TMR3 is a
16 bit timer.

2.3.11 Interrupt Circuitry

An interrupt is an event that suspends regular program operation while the
event is serviced by another program. Interrupts increase the response speed to
external events. Different microcontrollers have different interrupt sources
which can include external, timer and serial port interrupts. When an interrupt
is received current operation is suspended, the interrupt is identified and the
controller jumps (vectors) to an interrupt service routine.

There are two sources of interrupt: hardware and software. Hardware interrupts
include a signal to a pin, timer overflow, and serial port interrupts. Software
interrupts are commands given by the programmer, such as the SWI instruction
for the Motorola MC68HC705C8.

There are two different interrupt types: maskable and non-maskable. A
maskable interrupt can be disabled and enabled while non-maskable interrupts
can not be disabled and are therefore always enabled.

Most 8 bit microcontrollers use vectored arbitration interrupts. Vectored
arbitration means that when a specific interrupt occurs the interrupt handler
automatically branches to an address associated with that interrupt.

The servicing of interrupts in general is dictated by the status of the GIE
(Global Interrupt Enable). GIE is cleared when an interrupt occurs and all
interrupts are delayed until it is set.

 Sample Microcontroller Configurations

19

2.3.12 Buses

A bus carries information in the form of signals. There are three main buses:
address, data, and control.

1) The address bus is unidirectional and carries the addresses of memory
locations indicating where the data is stored. The number of wires in the
address bus determines the total number of memory locations. With a 13
bit address bus, for example, there would be 213 or 8192 memory locations.

2) The data bus is bi-directional and carries information between the CPU
and memory or I/O devices. Computers are often classified according to
the size of their data bus. The term “8-bit microcontroller” refers to a
microcontroller with 8 lines on its data bus. The number of wires in the
data bus determines the number of bits that can be stored in each memory
location.

3) The control bus carries data which controls system activity. Often this data
includes timing signals which synchronize the movement of other
information.

2.4 Sample Microcontroller Configurations

The following are some sample microcontroller configurations.

2.4.1 Motorola MC68HC705C8

The MC68HC705C8 is a member of Motorola’s MC68HC05 family. It based
on Von Neumann architecture.

Microcontroller Overview

20

Pins 40 or 44 pins
Clock 4MHz On-chip oscillator with crystal/ceramic resonator
RAM 176 bytes default (options include 208, 272 and 304)
ROM 7744 bytes default (options include 7696, 7648 and 7600)
Voltage 3.0 to 5.5 Volt
Registers Accumulator, Index, Program Counter, Stack pointer, Condition Code

Register
Timer(s) COP, 16 bit programmable timer
Ports 4: 8 bit I/O ports PORTA, PORTB and PORTC, 7 bit input PORTD
Interrupts 5 interrupts: IRQ pin, SWI, SPI, SCI and timer

Serial SPI (serial peripheral interface), SCI (serial communications interface)
Options Clock monitor

Table 1: Hardware characteristics of the Motorola MC68HC705C8

2.4.2 National Semiconductor COP8SAA7

The COP8SAA7 is a member of National Semiconductor’s COP8™ feature
family. The COP8SAA7 is based on a modified Harvard architecture.

Pins 16, 20, 28, 40, 44 pin
Clock Four user selectable clock options: 0.455 to 15 MHz
RAM 64 bytes
ROM 1024 bytes + 8 bytes User Storage space
Voltage 2.7 to 5.5 Volts
Registers Accumulator, Program Counter, PSW, CNTRL, ICNTRL, stack pointer, X,

B, S, SIOR, 2 timer registers
Timer(s) Watchdog, idle timer, 16 bit timer
Ports 5: 8 bit bidirectional I/O Ports C, G, L and F, 8 bit output Port D
Interrupts 8 interrupts: timer1, timer0, portL wakeup, software trap,

microwire/plus, external
Serial MICROWIRE/PLUS (SPI compatible)
Options Clock monitor
Table 2: Hardware characteristics of the National Semiconductor COP8SAA7

2.4.3 Microchip PIC16C54

The PIC16C54 is a member of the PIC16C5x family. These are 8 bit, EPROM-
based CMOS microcontrollers. The PIC16C54 is Harvard architecture.

 Sample Microcontroller Configurations

21

Pins 18 pins
Clock 20 MHz user selectable from low power crystal, crystal, high speed

crystal, R/C
RAM 32 bytes
ROM 512 words (12 bits)
Voltage 2.5 V to 6.25 V
Registers status, option, INDF, FSR, program counter, Working
Timer(s) watchdog, 8 bit timer, reset timer
Ports 4 bit I/O Port A, 8 bit I/O Port B
Interrupts 1
Serial none
Options none
Table 3: Hardware characteristics of the Microchip PIC16C54

2.4.4 Microchip PIC16C74

The PIC16C74 is a member of the PIC16C7x family. These are 8-bit, EPROM-
based CMOS microcontrollers. The PIC16C74 is Harvard architecture.

Pins 40/44
Clock 20 MHz
RAM 192
ROM 4K
Voltage 3 to 6
Registers 48 including Status, Option, Intcon, PIE1, PIR1, PIE2, PIR2, PCON, PCL,

PCLATH,INDF, FSR
Timer(s) 2 8 bit, 16 bit, watchdog
Ports 6 bit PORTA, 8 bit PORTB, PORTC, parallel PORTD, 3 bit PORTE also

TRISA, TRISB, TRISC, TRISD, and TRISE
Interrupts 12
Serial SPI, I2C, SSP, SCI
Options A/D Converter
Table 4: Hardware characteristics of the Microchip PIC16C74

23

3. The Embedded Environment
Microcontrollers used in development projects have very limited resources. You
are working close to your target machine and you must be familiar with your
target hardware construction and operation.

A good quality C development environment incorporates tools which allow you
to concentrate primarily on your applications and not on the hardware which
runs them. However, you cannot ignore low-level details of your target
hardware. The better you understand your run-time environment, the better
you can take advantage of its limited capabilities and resources.

3.1 The Embedded Difference

There are many aspects of embedded systems development which must be
considered. These are:

Reliability
Embedded systems must be reliable. Personal computer programs such as word
processors and games do not need to achieve the same standard of reliability
that a microcontroller application must. Errors in programs such as word
processors may result in errors in a document or loss of data. An error in a
microcontroller application such as a television remote control or compact disc
player will result in a product that does not work and consequently does not
sell. An error in a microcontroller application such as an antilock braking
system or autopilot could be fatal.

Efficiency
Issues of efficiency must be considered in real time applications. A real time
application is one in which must be able to act at a speed corresponding with
the occurrence of an actual process.

Cost
Many embedded systems must compete in a consumer market and cost is an
important issue in project development.

The Embedded Environment

24

3.2 Fabrication Techniques

CMOS
Complementary Metal Oxide Semiconductor (CMOS) is a technique commonly
used to fabricate microcontrollers. CMOS requires less power and CMOS chips
can be static which allows the implementation of a sleep mode. CMOS
microcontrollers must have all inputs connected to something.

PMP
Post Metal Programming (PMP) allows ROM to be programmed after final
metalization. This allows ROM to be programmed very late in the productions
cycle.

3.3 Memory Addressing and Types

Each microcontroller has a specific addressing range. An addressing range is the
number of addresses a microcontroller can access. The addressing scheme used
to access to these spaces varies from processor to processor, but the underlying
hardware is similar.

3.3.1 RAM

Random access memory1 or RAM consists of memory addresses the CPU can
both read from and write to. RAM is used for data memory and allows the CPU
to create and modify data as it executes the application program.

RAM is volatile, it holds its contents only as long as it has a constant power
supply. If power to the chip is turned off, the contents of RAM are lost. This
does not mean that RAM contents are lost during a chip reset. Vital state
information or other data can be recorded in data memory and recovered after
an interrupt or reset.

1 random access memory is used because the CPU can access any block of memory in
RAM in the same amount of time. This differs from sequential storage such as tape
where access time differs for different parts of the storage space.

 Memory Addressing and Types

25

Some chips provide an alternate RAM power supply so that memory contents
can be maintained even when the rest of the chip is without power. This does
not make RAM any less volatile, without a backup power source the contents
would still be lost. This type of RAM is called battery backed-up static RAM.

3.3.2 ROM

ROM, read only memory, is typically used for program instructions. The ROM
in a microcontroller usually holds the final application program.

Maskable ROM is memory space that must be burned in by the manufacturer
of the chip as it is constructed. To do this, you must provide the chip builder
with the ROM contents you wish the chip to have. The manufacturer will then
mask out appropriate ROM blocks and hardwire the information you have
provided.

Since recording chip ROM contents is part of the manufacturing process, it is a
costly one-time expense. If you intend to use a small number of parts, you may
be better off using chips with PROM. If you intend to use a large number of
parts for your application, then the one-time expense of placing your program
in ROM is more feasible.

3.3.3 PROM

Programmable ROM, or PROM, started as an expensive means to prototype
and test application code before burning ROM. In recent years PROM has
gained popularity to the point where many developers consider it a superior
alternative to burning ROM. As microcontroller applications become more
specialised and complex, needs for maintenance and support rise. Many
developers use PROM devices to provide software updates to customers
without the cost of sending out new hardware.

There are many programmable ROM technologies available which all provide a
similar service. A special technique is used to erase the contents of
programmable ROM then a special method is used to program new instructions
into the ROM. Often, the developer uses separate hardware to perform each of
these steps.

3.3.4 EPROM

EPROM (erasable programmable ROM) is not volatile and is read only. Chips
with EPROM have a quartz window on the chip. Direct exposure to ultra-violet

The Embedded Environment

26

radiation will erase the EPROM contents. EPROM devices typically ship with a
shutter to cover the quartz window and prevent ambient UV from affecting the
memory. Often the shutter is a sticker placed on the window.

Developers use an EPROM eraser to erase memory contents efficiently. The
eraser bombards the memory with high-intensity UV light. To reprogram the
chip, an EPROM programmer is used, a device which writes instructions into
EPROM.

The default, blank state for an EPROM device has each block of memory set.
When you erase an EPROM you are really setting all memory blocks to 1.
Reprogramming the device resets or clears the appropriate EPROM bits to 0.

Because of the way EPROM storage is erased, you can not selectively delete
portions of EPROM – when you erase the memory you must clear the entire
storage space.

3.3.5 EEPROM

EEPROM (electrically erasable programmable ROM) devices have a significant
advantage over EPROM devices as they allow selective erasing of memory
sections. EEPROM devices use high voltage to erase and re-program each
memory block. Some devices require an external power source to provide the
voltage necessary for erasing and writing and some have an onboard pump
which the chip can use to build up a charge of the required voltage.

Developers can reprogram EEPROM devices while the chip is operating.
However, EEPROM that can be rewritten is usually restricted to data memory
storage. EEPROM storage used as program memory typically requires the use
of an external power source and a programmer just like EPROM storage.

The most common use for EEPROM is recording and maintaining
configuration data vital to the application. For example, many modems use
EEPROM storage to record the current configuration settings. This makes the
configuration available to the modem user after cycling the power on the
modem. Often the default or factory configuration settings are stored in ROM
and the user can issue a command to restore default settings by overwriting the
current contents of EEPROM with the default information.

Sometimes chip manufacturers build EEPROM blocks into the chip for
last-minute configuration options. This saves manufacturers money as they can
design and fabricate a single chip and then set the EEPROM blocks to provide
special purpose versions with specific capabilities. This method is often used to

 Memory Addressing and Types

27

produce microcontroller versions for use on an evaluation board where chip
access to its own onboard ROM is turned off and replaced with external
EPROM or EEPROM storage. This allows developers to test application code
in cycles by downloading it to the board, programming the code into the
EPROM or EEPROM, and debugging it as it executes in the target hardware.

3.3.6 Flash Memory

Flash memory is an economical compromise between EEPROM and EPROM
technology. As with EEPROM high voltage is applied to erase and rewrite flash
memory. However, unlike EEPROM, you can not selectively erase portions of
flash memory – you must erase the entire block as with EPROM devices. Many
manufacturers are turning to flash memory. It has the advantages of not
requiring special hardware and being inexpensive enough to use in quantity.

Manufacturers often provide customers with microcontroller products whose
ROM is loaded with a boot or configuration kernel where the application code
is written into flash memory. When the manufacturer wants to provide the
customer with added functionality or a maintenance update, the hardware can
be reprogrammed on site without installing new physical parts. The hardware is
placed into configuration mode which hands control to the kernel written in
ROM. This kernel then handles the software steps needed to erase and re-write
the contents of the flash memory.

Another useful implementation of flash memory includes a device which can
connect electronically to a computer owned by the manufacturer. The
configuration kernel connects to the manufacturer’s computer, downloads the
latest version of the control application and writes this application to flash
memory. Such elaborate applications are typically beyond the resources of an 8
bit microcontroller; we mention the example to show the advantage of
programmable ROM technologies.

3.3.7 Registers

The CPU maintains a set of registers which it uses to store information.
Registers are used to control program execution and maintain intermediate
values needed to perform required calculations. Some microcontrollers provide
access to CPU registers for temporary storage purposes. This can be extremely
dangerous as the CPU can at any time overwrite a register being used for its
designated purpose.

The Embedded Environment

28

8 bit microcontrollers do not often provide resources for register memory
outside the CPU. This means that the C register keyword is meaningless
because the compiler can not dedicate a CPU register for data storage.

Some C implementations will set aside RAM for special purpose pseudo-registers
to use when your application attempts certain operations. For example, if you
attempt a 16 bit math operation, the compiler can dedicate a portion of base-
page RAM for 16 bit pseudo-registers which store values during math
operations. You can use these special registers for temporary purposes in places
where your code will not require them for their intended purpose. You must be
careful, if the compiler uses a pseudo-register it will overwrite current contents.

3.3.8 Scratch Pad
Microcontrollers are typically very short on resources, especially data memory
space. Many C compilers use some available RAM for internal purposes such as
pseudo-registers. An efficient C compiler will support scratch pads in data
memory. A scratch pad is a block of memory which can be used for more than
one purpose.

See 11.6
Unions

The simplest way to conserve data memory is through the judicious use of
global variables. For example, in a traditional C environment developers create
local counter variables every time they are required because data memory is
cheap and plentiful. However, embedded systems developers will often create
global counter variables. Any function can then use this allocated block of data
memory when a counter or temporary variable is needed. Examine the
following union called ScratchPad which is declared globally:
union {
 int asInt;
 char asChar;
 short asShort;
 long asLong;
 void near * asNPtr;
 void far * asFPtr;
 struct {
 short loByte;
 short hiByte;
 } asWord;
} ScratchPad;

Example 2: Using a union structure to create a scratch pad

 Interrupts

29

To use the global variable as a loop counter within a function, the following
code could be used:

int somefunc() {
 ScratchPad.asShort=0;
 while (ScratchPad.asShort < 10) {
 // some code
 ScratchPad.asShort += 1;
 } // end while
 return (someIntValue);
}

Example 3: Using globally allocated data space in a function

Some C compilers support a C extension which fixes the location of a symbol
in memory. In these cases, the compiler typically does not check that the
memory specified is not being used by other data. You can use this feature to
manage how variables are placed in data memory space. More importantly you
can overlay one variable symbol on top of the memory allocated for another.
This is a useful technique for reusing allocated variable space.

For example, it is possible to reuse internal the pseudo-register variables created
by the compiler in portions of your code that do not use them for their
designated purpose. For example, if your compiler creates the 16 bit pseudo
index register __longIX you can reuse this 16 bit location with the following
statement2:

long int myTemp @ __longIX;
You must ensure that you understand exactly how and when the compiler uses
these internal variables before you reuse the variable space.

Fixing a symbol at a specific memory location will likely affect the optimization
a compiler will perform with the symbol. It may be more worthwhile to avoid
this method of overlaying memory in favour of the savings generated by the
compiler’s optimizer.

3.4 Interrupts

Interrupts allow the microcontroller to interact with its environment. If your
microcontroller does not have interrupts you must poll peripherals to

2 The @ symbol uses the address allocated to __longIX for the new symbol myTemp.
This is not standard C so the syntax your compiler provides may be different.

The Embedded Environment

30

determine if they require servicing. It is much more efficient to have peripheral
devices inform, or interrupt, the controller when they require servicing.

An interrupt is a signal sent to the microcontroller which causes it to stop its
current execution and perform another action. The chip stops executing your
main program and executes some other code. Interrupts can be edge triggered
(rising or falling) or level triggered.

3.4.1 Interrupt Handling

Code executed by an interrupt is not generally considered part of the main
application. Since this code handles the cases where an interrupt occurs, it is
called an interrupt handler or an interrupt service routine.

NOTE
It is vital that you understand how your target hardware implements interrupts as
this affects both the service routines you must write and how you write them.

In general, you must write an interrupt service routine for each interrupt your
target hardware can detect even if the handler consists solely of a return from
interrupt or a similar instruction.

3.4.2 Synchronous and Asynchronous Interrupt Acknowledgement

Interrupts are asynchronous: they are events that can occur during, after, or
before an instruction cycle. Interrupt acknowledgement can be either
synchronous or asynchronous. Most interrupt acknowledgement is synchronous, the
instruction currently being executed is completed before the interrupt is
acknowledged.

Theoretically, when the processor acknowledges an interrupt asynchronously it
halts execution of the current instruction and immediately services the interrupt.
The only asynchronously acknowledged interrupt is RESET. Since RESET
erases the state of the machine, it is a moot point whether the CPU actually
halts execution of the current instruction or not.

When the processor acknowledges an interrupt synchronously, it finishes
executing the current instruction and, before it performs a fetch for the next
instruction, it services the interrupt.

 Interrupts

31

3.4.3 Servicing Interrupts

There are two general ways in which microcontrollers service interrupts, each
with several variations.

!!!! Vectored Arbitration System
Some machines reserve a portion of program memory for interrupt vectors.
The location of each particular vector in program memory may vary from
processor to processor but it cannot be changed by the programmer. The
programmer can only change the data at each vector location.

Each interrupt vector contains the address of that interrupt’s service routine.
When the compiler allocates program memory for interrupt handlers, it places
the appropriate address for the handler in the appropriate interrupt vector. To
help the compiler you must usually tell it where the interrupt vector for each
interrupt is located in program memory.

When an interrupt occurs, global interrupts are first disabled to prevent an
interrupt service from being itself interrupted. On the COP8SAA7 this
involves setting the GIE bit to zero. The machine then reads the address
contained at the appropriate interrupt vector. It then jumps to the address and
begins executing the interrupt service code. Vectored interrupts are much faster
than non-vectored.

The following are sample interrupts from the National Semiconductor
COP8SAA7:

The Embedded Environment

32

Rank Source Description Vector Address *

1 Software INTR Instruction 0bFE - 0bFF
2 Reserved Future 0bFC - 0bFD
3 External G0 0bFA - 0bFB
4 Timer T0 Underflow 0bF8 - 0bF9
5 Timer T1 T1A/Underflow 0bF6 - 0bF7
6 Timer T1 T1B 0bF4 - 0bF5
7 MICROWIRE/PLUS BUSY Low 0bF2 - 0bF3
8 Reserved Future 0bF0 - 0bF1
9 Reserved Future 0bEE - 0bEF
10 Reserved Future 0bEC - 0bED
11 Reserved Future 0bEA - 0bEB
12 Reserved Future 0bE8 - 0bE9
13 Reserved Future 0bE6 - 0bE7
14 Reserved Future 0bE4 - 0bE5
15 Port L/Wakeup Port L Edge 0bE2 - 0bE3
16 Default VIS Instruction Execution

without any interrupts
0bE0 - 0bE1

* b represents the Vector to Interrupt Service routine (VIS) block. VIS and the vector
table must be within the same 256 byte block. If VIS is the last address of a block
the table must be in the next block.

Table 5: Sample vectored interrupts

"""" Non-Vectored Priority System
When an interrupt occurs, the PC branches to a specific address. At this
address the interrupts must be checked sequentially to determine which one has
caused the interrupt.

This scheme can be very slow and there can be a large delay between the time
the interrupt occurs and the time it is serviced. However, the programmer can
set the interrupt priority and non-vectored interrupts are feasible for
microcontrollers with less than five interrupts.

3.4.4 Interrupt Detection

On most chips, the interrupt process saves the state of the machine including
the current program counter, stack pointer, and register contents. This is done
to ensure that after an interrupt is serviced execution will resume at the
appropriate point in main program with no loss of data.

 Interrupts

33

Some chips save the machine state automatically while others will only save a
portion of the machine state. In the second case it is up to the programmer to
provide code which saves the current state. Usually each interrupt handler will
do this before attempting anything else. The location and accessibility of the
saved state information varies from machine to machine. In most cases, it is
saved on a stack located in data memory.

For example the Motorola MC68HC705C8 saves the machine state in the stack
as follows:

Figure 8: Saving the machine state on the MC68HC705C8

Many C compilers for embedded microcontrollers reserve a portion of data
memory for internal uses such as for pseudo-registers. You must check your
compiler documentation to determine what code you must write to preserve the
information located in these memory blocks. Some compilers document their
internal data memory overhead so you can determine what you must preserve
in your interrupt handlers while others automatically generate code to preserve
this data.

One way to conserve memory is to avoid unnecessarily preserving data. If your
compiler creates a pseudo register for 16 bit math operations and your interrupt
handler does not use this pseudo register, then you need not preserve its state.

3.4.5 Executing Interrupt Handlers

To minimize the possibility of an interrupt handler being itself interrupted, the
microcontroller will usually disable interrupts while executing an interrupt
handler. The method of doing this varies from chip to chip. Some platforms
automatically disable interrupts, while others leave this to the programmer.
Masking interrupts is useful during timing critical sections of code. The
COP8SAA7, for example, has a GIE (Global Interrupt Enable) which is set to
allow interrupts or cleared to prevent interrupts. On the Motorola

1 1 1 Condition Codes

Accumulator

Index Register

0 0 0 PC High

Program Counter Low

The Embedded Environment

34

MC68HC705C8 the interrupt mask bit of the Condition Code Register is set to
prevent interrupts.

Some machines provide a small number of non-maskable interrupts (NMI).
Interrupts that can be disabled are maskable, those which you cannot disable are
non-maskable. For example, RESET is non-maskable – regardless of the code
currently executing the CPU must service a RESET interrupt. Some
microcontrollers also designate software interrupts or BREAK instructions that
you can use as a non-maskable interrupt.

3.4.6 Multiple Interrupts

What happens after the CPU services an interrupt? This varies depending upon
target hardware. In general, the CPU first checks for any outstanding interrupts.

One some machines the CPU first fetches an instruction and then checks for
interrupts after executing this instruction. This guarantees that no matter how
many interrupts cue up, the machine will always step through program code and
no more than one interrupt handler will execute between each main program
instruction.

On most machines the CPU will check for interrupts before performing the
next instruction fetch. As long as it detects a pending interrupt it will service the
interrupt before fetching the next instruction. This means it is possible to halt a
program by continuously sending interrupts. On the other hand, it guarantees
that an interrupt is serviced before any more main program code is executed.

When an interrupt occurs the signal sets a register bit. When the CPU checks
for pending interrupts it reads the register for set bits. Upon completing an
interrupt handler, the appropriate bit in the register is cleared.

How does the CPU decide which interrupt to service first? Each interrupt a
chip can detect has a precedence, the chip services those interrupts with a
higher precedence first.

3.5 Specific Interrupts

Microcontrollers vary widely in the types of interrupts they can detect. Some
general types are widely available in one form or another. The only universal
interrupt is RESET and some simple chips support no other interrupts.

 Specific Interrupts

35

3.5.1 RESET

The RESET interrupt prompts the chip to behave as if the power has been
cycled. It does not actually cycle the power to the chip. This means that the
contents of volatile memory, typically data memory, can remain intact. The
reset vector contains the address of the first instruction that will be executed
by the CPU.

You can write an initialization routine to be executed before any other program
code which first checks specific locations in data memory for particular values
and then loads values into those locations. This can be used to check if the
RESET was cold, power cycled, or warm, power not cycled. Some compilers
support a initialization function which is executed upon RESET before the
main program.

On most chips, RESET causes the CPU to halt execution immediately and
restart itself. On some chips, RESET may finish the current instruction. Each
microcontroller performs a series of actions when it detects a RESET. For
example, when a RESET occurs on the Motorola MC65HC705C8 the
following actions occur:

1) Data direction registers are cleared

2) Stack pointer is set to 0x00FF

3) CCR I bit is set

4) External interrupt latch is cleared

5) STOP latch is cleared

6) WAIT latch is cleared

A RESET can occur because of a manual reset, a COP time out, low voltage,
initial power on, or an attempt to execute an instruction from an illegal address.

3.5.2 Software Interrupt/Trap

Some chips that support interrupts provide an instruction in the instruction set
which the programmer can use to halt program execution. This instruction
name is different for different devices.

The COP8SAA7 has a Software trap which occurs when the INTR instruction
is placed in the instruction register. The software trap is used for unusual and

The Embedded Environment

36

unknown errors. The Motorola MC68HC705C8 has a software interrupt
executable instruction called SWI.

3.5.3 IRQ

IRQ interrupts are physical pins or ports on the chip which generate an
interrupt when they are sent a signal. Some chips do not support IRQ type
interrupts and those that do implement them in many different ways. The
number of pins available for IRQs varies widely from chip to chip.

The developer usually has the ability to configure the IRQ interrupts to detect
signals in specific ways. For example, they can be made sensitive to a signal
edge, a signal hold, or a signal fall.

For example, the Microchip PIC17C42a has an INT external interrupt pin. The
developer can set the interrupt trigger to be either the rising edge or falling edge
by setting an appropriate register bit. The INT interrupt can be disabled by
clearing the appropriate control bit.

3.5.4 TIMER

A TIMER interrupt occurs when a timer overflow is detected. For example, In
the Microchip PIC16C74 there is a TMR0 interrupt which is generated when
the TMR0 8 bit timer overflows. An overflow occurs when the timer goes from
1111 1111 to 0000 0000. The timer is usually incremented every instruction
cycle.

TIMER interrupts in general provide access to an external clock. This is useful
in applications where timing is critical. For control applications, for example, it
is important to sample input data at specific time intervals. This is usually
accomplished with TIMER based interrupts.

You can also use TIMER interrupts in other ways, depending upon your
hardware capabilities. Some chips, such as the Microchip PIC16C74, have
readable and writable timers which let you specify a certain duration of time.
Each instruction cycle of the CPU counts from this time and when the counter
overflows the TIMER interrupt fires. Other chips let you specify the number of
cycles as an interval for the TIMER and it will fire every time the specified
number of cycles pass.

The TIMER interrupt is most useful in building a watchdog or computer operating
properly timer for devices which do not include one. First you configure the
watchdog to tell it how long it can last without attention. Then, you provide

 Power

37

code in your program to touch the watchdog at regular intervals before the time
period expires. If your program leaves the watchdog too long without attention,
the configured time period passes with no touch instruction, the watchdog
activates the RESET interrupt.

This type of timer interrupt provides your program with an independent safety
net. Since the watchdog timer depends only upon the clock signals to do its job,
if your program ever fails the watchdog will realize that the computer is not
operating properly and will activate a RESET.

3.6 Power

Most microcontrollers support 4.5 to 5.5 Volt operation. There are also many
low voltage parts which are designed to work at 3 volts or less.

3.6.1 Brownout

Microcontrollers have an on-board circuit which provides brownout protection.
A brownout occurs when the operating voltage falls below the defined
brownout voltage. When a brownout occurs the device is reset and waits for the
operating voltage to rise above the brownout voltage.

3.6.2 Halt/Idle

Individual microcontrollers have specific modes which stop the execution of
the program without affecting the power to the microcontroller. In these
modes less power is required and power consumption is reduced. Halt mode
stops all activities and can be terminated by a reset or an interrupt. Idle mode
stops most activities. The clock, watchdog, and idle timer remain active.

3.7 Input and Output

Input and output are lines or devices which carry information between the
microcontroller and the outside world.

3.7.1 Ports

A port is a physical input/output connection. Most ports on 8 bit
microcontrollers are 8 bits or less. Ports can be either input, output or

The Embedded Environment

38

input/output. Often the port state is set with a direction register which
determines if the port is input, output or input/output. When a port pin is an
output it is a latched output. This means that when the pin is in a given state,
set or unset, it will remain in that state until reset.

Microcontrollers usually contain several ports.

For example, the Microchip PIC16C74 has five ports called PORTA, PORTB,
PORTC, PORTD and PORTE. PORTA is 6 bit latch which is configured as
input or output using the register TRISA. PORTA can also be configured as
analog or digital using the ADCON1 register. PORTB is an 8 bit bi-directional
port with data direction register TRISB.

The National Semiconductor COPSAA7 contains four bi-directional ports:
PORTC, PORTG, PORTL and PORTF. Each bit can be configured as input,
output or trisate.

3.7.2 Serial Input and Output

CAN
Controlled Area Network was developed by Bosh and Intel. It is a multiplexed
wiring scheme.

I2C™ (Inter-Integrated Circuit bus)
A two wire serial interface developed by Phillips. It is a multi-master, multi-
slave network interface with collision detection. Up to 128 devices can exist on
the network. The two lines consist of the serial data line and the serial clock line
which are both bidirectional..

It provides a communication link between integrated circuits. Every component
hooked up to the bus has its own unique address.

J1850
J1850 is the SAE (Society of Automotive Engineers) standard.

MICROWIRE PLUS (National Semiconductor)
A serial synchronous bi-directional communications interface used on National
Semiconductor devices. It is SPI compatible. It consists of an 8 bit serial shift
register with serial data input serial data output and serial shift clock

 Input and Output

39

SCI (Serial Communications Interface)
A Serial Communications Interface is an asynchronous serial interface. It is an
enhanced UART. The SCI has a transmitter and a receiver which are
functionally independent but use the same data format and baud rate.

SCI features standard nonreturn to zero format, error detection, simultaneous
send and receive, 32 different baud rates, selectable word length, and four
separate interrupt conditions. There are five registers: SCDAT (serial
communication data register), SCCR1 (serial communication control register 1),
SCCR2 (serial communication control register 2), SCSR (serial communication
status register), and the baud rate register.

SPI (Serial Peripheral Interface)
A Serial Peripheral Interface is a three-wire synchronous serial port which
allows several microcontrollers to be interconnected. In the configuration there
must be at least one microcontroller master while the remaining
microcontrollers can either be masters or slaves.

SPI features four programmable master bit rates, programmable clock polarity
and phase and end of transmission interrupt. The clock is not included in the
data stream and must be provided as a separate signal. There are three registers,
SPSR, SPCR and SPDR that allow for control, status and storage functions.
There are four basic pins which have different names on different devices:

"# Data out
"# Data in
"# SCK (Serial Clock)
"# SS (Slave Select)

A SPI is a type of SSP.

SSP (Synchronous Serial Port)
The SSP does not require start and stop bits and operates at higher clock rates
then asynchronous serial ports.

UART
A Universal Asynchronous Receiver Transmitter is a serial port adapter that
receives and transmits serial data with each data character preceded by a start bit

The Embedded Environment

40

and followed by a stop bit. There is sometimes a parity bit included. A UART is
used mainly as a serial to parallel and parallel to serial converter.

USART
A Universal Synchronous/Asynchronous Receiver Transmitter is a serial port
adapter used for synchronous or asynchronous serial communication.

3.8 Analog to Digital Conversion

It is often necessary to convert an external analog signal to a digital
representation or to convert a digital signal to an analog signal.

Successive Approximation Converter
Most microcontrollers use a successive approximation A/D converter. The
converter works with one bit at a time from the MSB (most-significant bit) and
determines if the next step is higher or lower. This technique is slow and
consumes a great deal of power. It is also cheap and has consistent conversion
times.

The Microchip PIC16C74 has an A/D converter module which features 8
analog inputs. These 8 inputs are multiplexed into one sample-and-hold which
is the input into the converter.

Single Slope Converter
Appears in National Semiconductor’s COP888EK. It includes an analog
MUX/comparator/timer with input capture and constant current source. The
conversion time varies greatly and is quite slow. It also has 14 to 16 bit
accuracy.

Flash converter
Examines each level and decides what level the voltage is at. It is very fast, but
draws a great deal of current and is not feasible beyond 10 bits.

 Miscellaneous

41

3.9 Miscellaneous

3.9.1 Digital Signal Processor

A Digital Signal Processor (DSP) runs repetitive, math intensive algorithms.

3.9.2 Clock Monitor

The clock monitor watches the clock and determines if it is running too slow. It
can activate a microcontroller reset.

3.10 Devices

3.10.1 Mask ROM

ROM whose contents are set by masking during the manufacturing process.

3.10.2 Windowed Parts

A microcontroller with a window which allows for ROM contents to be erased.

3.10.3 OTP

OTP (One Time Programmable) devices are microcontrollers where once a
program is written into the device it cannot be erased.

43

4. Programming Fundamentals
It is necessary to understand some basic computer programming concepts
before learning C programming.

4.1 What is a Program?

The most important thing to remember about computers is that they can do
only what they are instructed to do. To accomplish a meaningful task on a
computer, someone must give it exhaustive and very explicit instructions. A
collection of such instructions is a called a program and the person who writes
and revises these instructions is known as a programmer or developer.

4.2 Number Systems

There are several different number systems. We are used to the decimal number
system which is of base 10. This means that it has ten digits and coefficients are
multiplied by powers of 10. For example 456 is the same as 4(102) + 5(101) +
6(100) = 400 + 50 + 6 = 456.

Computers use the binary number system with base 2: it has two digits (0 and 1)
and the coefficients are multiplied by powers of 2. For example 110 is the same
as 1(22) + 1(21) + 0(20) = 6.

The hexadecimal number system is often used as it is easier to read than binary
numbers. It is base 16 and uses 0-9 and A-F to represent values.

Programming Fundamentals

44

Base 10 Decimal Base 2 Binary Base 16 Hexadecimal

0 0000 0
1 0001 1
2 0010 2
3 0011 3
4 0100 4
5 0101 5
6 0110 6
7 0111 7
8 1000 8
9 1001 9
10 1010 A
11 1011 B
12 1100 C
13 1101 D
14 1110 E
15 1111 F
16 0001 0000 10
17 0001 0001 11
100 0110 0100 64
255 1111 1111 FF
1024 0100 0000 0000 400
65,535 1111 1111 1111 1111 FFFF

Table 6: Binary, decimal and hexadecimal

4.3 Binary Information

When people read and write they use extremely powerful and flexible coding
systems called alphabets. Computers, however, can only handle information
written in the most simple coding system possible — binary notation. The
binary alphabet has only two components: 1 and 0.

 Binary Information

45

 A computer’s memory consists of a long series of switches known as bits.
These switches can exist in only two states; therefore, they are well suited to
the binary alphabet. At any given time a single bit in computer memory can
represent either 1 or 0. A bit containing 1 is referred to as being set while a
bit containing a 0 is referred to as being unset or clear. Anything that a
computer reads, writes, or executes must be encoded as a series of set and
unset bits.

The following diagram shows the relationship between data value and data
storage:

Bit Number 7 6 5 4 3 2 1 0
Bit Values 1 1 0 1 1 1 0 1 Address 0x00

Signal

Figure 9: Data storage VS. data value

In the example the data is stored at the address 00 Hex. The data stored at that
location has the value 1101 1101 binary or DD hexadecimal.

One bit in computer memory can record either 0 or 1 because it contains a
single binary digit which can exist in only two states. Two bits read in sequence,
however, can record four possible numbers: 0, 1, 2, and 3 because two bits can
exist in the states 00, 01, 10 and 11. As with decimal notation, the first digit
records the multiples of one included in the number. The second digit records
the multiples of two since the computer only has two digits available. Adding a
third digit allows for the encoding of multiples of 4.

Bits are often grouped in sets. 8 bits make 1 byte, while 16 bits make one word.
Standard terminology refers to 210 (1024) bytes as a kilobyte.

A programmer can give the computer information and instructions using long
strings of 1’s and 0’s. However, this process would be very time consuming and
prone to error. To resolve these problems programmers have developed
languages in which to write programs. Languages help the programmer by
making the job of programming a computer faster, more efficient, and more
reliable.

Programming Fundamentals

46

4.4 Memory Addressing

Computer memory is divided up into addresses. Each address holds an 8 bit (or
1 byte) value. The number of address lines determines the number of locations
available. For example, the MC68HC05C8 can address 8192 bytes of memory.
Sine each bit can hold one of two values (0 or 1) and 213 = 8192 we know that
there are 13 address lines. The first address will be the value 0 0000 0000 0000
(0x0000) and the last address will be the value 1 1111 1111 1111 (0x1FFF).

Microcontrollers have different addressing modes which allow them to access
locations in memory as quickly as possible. For example, the first 256 locations
on the Motorola MC68HC705C8 can be accessed using direct addressing mode
where the CPU assumes that the high byte of the address is 00000000.

4.5 Machine Language

Computers only understand one language: machine language. Each family of
computers has its own machine language which can not be understood by any
other family of computers. Any particular computer within a family may also
use a slightly different dialect of the family language and may incorporate
features not available to other members of the family. Any instructions for a
specific computer must be given in its individual machine language. Machine
language is a collection of binary numbers such as:

00000000000001010101011110100110100010101010011010001111101
11100000010000000000011111111100011101010110000000000000010
10

The hexadecimal equivalent is:
000557A68AA68FBC0800FF8EAC000A

4.6 Assembly Language

Each microcontroller has its own assembly language or assembly language
variation. Assembly language consists of mnemonic instructions and addressing
modes where the instruction describes what to do and the addressing mode
describes where to do it. The following instructions are from the National
Semiconductor COP888 assembly language:

 Instruction Sets

47

Address Instruction Hex Explanation

0005 LD B,#034 9F 34 Load B register with 34
0007 SBIT 06,[B] 7E Set bit 6 of B register to 1
000E IFBIT 06,[B] 76 If bit 6 of B register is 1 then execute

next instruction
0011 LD A,[B] AE Load Accumulator with contents of

location referenced by B
0012 IFNE A,#001 99 01 If the Accumulator is not equal to 1

then execute next instruction
0014 JP 00017 02 Jump to PC + 02 +1 (0017)
0015 CLRA 64 Clear accumulator
0000 JMPL 00005 AC 00 05 Jump to address 0005

Table 7: Interpretation of assembly language

8 bit microcontrollers usually use byte size instruction codes. Each instruction
has two possible components: an opcode and an operand. The opcode is the
function that the instruction performs while the operand is data used by the
opcode. Neither opcodes nor operands are restricted to 1 byte.

There are several different types of addressing modes. An addressing mode is
simply the means by which an address is determined. Some common modes are
immediate data, direct address, and indirect or indexed address.

4.6.1 Assembler

Assembly language programs are not directly executable, they must be
translated to machine language. This translation is done using a program called
an assembler.

4.7 Instruction Sets

Most microcontrollers use the CISC (Complex Instruction Set Computer)
foundation. CISC is an architecture which handles complex instructions. If one
complex instruction encapsulates several simple instructions, the time spent
retrieving the instruction from memory was reduced. This is useful with
sequential computing designs.

Some microcontrollers are based upon a RISC (Reduced Instruction Set
Computer) design. RISC is an architecture which handles simple instructions.

Programming Fundamentals

48

The processor can execute these instructions at a very high speed. RISC uses a
technique called pipelining the processing of instructions can be overlapped.
For example, one instruction can be read from memory while another is
decoded and another is executed. Many RISC machines have a single
instruction size and a small number of addressing modes.

Some microcontrollers are called SISC (Specific Instruction Set Computer)
machines. This is based on the fact that the instruction sets are designed
specifically for control purposes.

 Instructions Instruction
Size

Cycle Address Modes

MC68HC705C8 58 8, 16 or 24 bit 2 to 11 10

COP8SAA7 56 8, 16 or 24 bit 1 to 5 10

PIC16C54 33 12 bit 1 or 2 3

PIC16C74 35 14 bit 1 or 2 3

Table 8: Instruction set comparisons

4.8 The Development of Programming Languages

Programming languages were originally developed to reduce program
development time. Programming languages also increase the portability,
readability and modifiability of programs. For example a program written for
the National Semiconductor COP8SAA7 in its assembly language will not run
on the Motorola 68HC705C8, actually it may not run on other COP8 parts
because of differences in the instruction set. If a program is written in C for the
COP8SAA7 it can be ported to the 68HC705C8 with few changes.

The following examples show the same C code compiled for the COP8SAA
and the 68HC705C8. When a language such as C is used the program must
simply be recompiled while an assembly language program must be completely
rewritten.

0034 0006 bit b@0x34.6;
0008 char j;
0005 #define bit5 5
0008 0005 bit bj@&j.bit5;
0008 0005 bit bj1@j.bit5;
 void main(void){
0005 9F 34 LD B,#034 b=1;
0007 7E SBIT 06,[B]
0008 BD 08 6D RBIT 05,008 bj=0;

 The Development of Programming Languages

49

000B BD 08 7D SBIT 05,008 bj1=1;
000E 76 IFBIT 06,[B] if (b==1)
000F 6E RBIT 06,[B] b=0;
000F 6E RBIT 06,[B]
0010 57 LD B,#08 b=(j==1)?0:1;
0011 AE LD A,[B]
0012 99 01 IFNE A,#001
0014 02 JP 00017
0015 64 CLRA
0016 02 JP 00019
0017 98 01 LD A,#001
0019 9F 34 LD B,#034
001B 92 00 IFEQ A,#000
001D 02 JP 00020
001E 7E SBIT 06,[B]
001F 01 JP 00021
0020 6E RBIT 06,[B]
0021 8E RET }

Example 4: A typical assembly language program for the COP8SAA

0034 0006 bit b@0x34.6;
0050 char j;
0005 #define bit5 5
0050 0005 bit bj@&j.bit5;
0050 0005 bit bj1@j.bit5;
 void main(void){
0200 1C 34 BSET 6,$34 b=1;
0202 1B 50 BCLR 5,$50 bj=0;
0204 1A 50 BSET 5,$50 bj1=1;
0206 0D 34 02 BRCLR 6,$34,$020B if (b==1)
0209 1D 34 BCLR 6,$34 b=0;
020B B6 50 LDA $50 b=(j==1)?0:1
020D A1 01 CMP #$01
020F 26 03 BNE $0214
0211 4F CLRA
0212 20 02 BRA $0216
0214 A6 01 LDA #$01
0216 4D TSTA
0217 26 04 BNE $021D
0219 1D 34 BCLR 6,$34
021B 20 02 BRA $021F
021D 1C 34 BSET 6,$34
021F 81 RTS }

Example 5: Program in Example 4 compiled for the 68HC705C8

One of the most important tools that programmers developed to deal with new
high level languages is the language compiler.

Programming Fundamentals

50

4.9 Compilers

Compilers translate high level programming language instructions into machine
language. They perform the same task for high level languages that an assembler
performs for assembly language, translating program instructions from a
language such as C to an equivalent set of instructions in machine language.
This translation does not happen in a single step – three different components
are responsible for changing C instructions into their machine language
equivalents. These three components are:

1) Preprocessor
2) Compiler
3) Linker

4.9.1 The Preprocessor

 A program first passes through the C preprocessor. The preprocessor goes
through a program and prepares it to be read by the compiler. The
preprocessor includes the contents of other programmer specified files,
manipulates the program text, and passes on instructions about the particular
computer for which the compiler will be translating.

4.9.2 The Compiler

The compiler translates a program into an intermediate form containing both
machine code and information about the program’s contents. The compiler is
the second component to handle your program. The compiler has the most
important job: digesting and translating the program into a language readable by
the destination computer.

Many compilers operate in different passes through the code. There are often
passes specifically to handle optimizations of code which will reduce the size of
the machine code generated.

4.9.3 The Linker

When programs were written in the past often the development computer was
not powerful enough to hold the entire program being developed in memory at
one time. Historically, programs had to be divided into separate modules where
each module would be compiled into object code and a linker would link the

 Cross Development

51

object modules together. Our development machines today are very powerful
and the use of a linker is no longer absolutely necessary.

Many implementations of C provide function libraries which have been pre-
compiled for a particular computer. These functions serve common program
needs such as serial port support, input/output, and description of the
destination computer. Functions within libraries are usually either linked with
modules which use them or included directly by the compiler if the compiler
supports library function inclusion.

When your program has been pre-processed, compiled and linked, the
destination computer will be able to read and execute your program.

4.10 Cross Development

A cross compiler runs on one type of computer and produces machine code for
a different type of computer. While many 8 bit embedded microcontrollers can
support sophisticated and extremely useful programs, they are not powerful
enough to support the resource needs of a C development environment. How
does a developer create and compile programs for an 8 bit microcontroller? By
using a cross compiler.

4.10.1 Cross compiler

An embedded systems developer writes and compiles programs on a larger
computer which can support a C development environment. The compiler used
does not translate to the machine language of the development computer, it
produces a version of the program in the machine language of the 8 bit
microcontroller. A compiler that runs on one type of computer and provides a
translation for a different type of computer is called a cross-platform
compiler or cross-compiler.
The object code formats generated by a cross-compiler are based on the target
device. For example, a compiler for the Motorola MC68HC705C8 could
generate an S-record file for its object code.

4.10.2 Cross development tools

After a program is compiled it must be tested using a simulator or an
emulator. After testing the developer uses a special machine called a

Programming Fundamentals

52

programmer to imprint the translated program into the memory of the 8 bit
microcontroller.

Simulator
A simulator is a software program which allows a developer to run a program
designed for one type of machine (the target machine) on another (the
development machine). The simulator simulates the running conditions of the
target machine on the development machine.

Using a simulator you can step through your code while the program is running.
You can change parts of your code in order to experiment with different
solutions to a programming problem. Simulators do not support real interrupts
or devices.

An in-circuit simulator includes a hardware device which can be connected to
your development system to behave like the target microcontroller. The in-
circuit simulator has all the functionality of the software simulator while also
supporting the emulation of the microcontroller’s I/O capabilities.

Emulator
An emulator or in-circuit emulator is a hardware device which behaves like a
target machine. It is often called a real time tool because it can react to events as
the target microcontroller would. Emulators are often packaged with monitor
programs which allow developers to examine registers and memory locations
and set breakpoints.

4.10.3 Embedded Development Cycle
The development process for embedded software follows a cycle:

1. Problem specification

2. Tool/chip selection

3. Software plan

4. Device plan

5. Code/debug

6. Test

7. Integrate

 Cross Development

53

Problem Specification
The problem specification is a statement of the problem that your program will
solve without considering any possible solutions. The main consideration is
explaining in detail what the program will do.

Once the specification of the problem is complete you must examine the
system as a whole. At this point you will consider specific needs such as those
of interrupt driven or timing-critical systems.

For example, if the problem is to design a home thermostat the problem
specification should examine the functions needed for the thermostat. These
function may include reading the temperature, displaying the temperature,
turning on the heater, turning on the air conditioner, reading the time, and
displaying the time. Based on these functions it is apparent that the thermostat
will require hardware to sense temperature, a keypad, and a display.

Tool/Chip Selection
The type of application will often determine the device chosen. Needs based on
memory size, speed and special feature availability will determine which device
will be most appropriate. Issues such as cost and availability should also be
investigated.

The tools available will also impact a decision to develop with a certain device.
It is essential to determine if the development decisions you have made are
possible with the device you are considering. For example, if you wish to use C
you must select a device for which there is a C language compiler. It is also
useful to investigate the availability of emulators, simulators and debuggers.

Software Plan
The first step in the software plan is to select an algorithm which solves the
problem specified in your problem specification. Various algorithms should be
considered and compared in terms of code side, speed, difficulty, and ease of
maintenance.

Once a basic algorithm is chosen the overall problem should be broken down
into smaller problems. The home thermostat project quite naturally breaks
down into modules for each device and then each function of that device.

For example, the thermostat may have a display to the LCD display module and
a read from the keyboard module.

Programming Fundamentals

54

Device Plan
The routines for hardware specific features should also be planned. These
routines include:

1) Set up the reset vector

2) Set up the interrupt vectors

3) Watch the stack (hardware or software)

4) Interact with peripherals such as timers, serial ports, and A/D
converters.

5) Work with I/O ports

Code/Debug
The modules from the software plan stage are coded in the project language.
The coded modules are compiled or assembled and all syntactic error are
repaired.

Debugging should consider issues such as:

"# Syntactic correctness of the code

"# Timing of the program

Test
Each module should be tested to ensure that it is functioning properly. This
testing is done using simulators and/or emulators. It is also important to test
the hardware you will be using. This is easily done by writing small programs
which test the devices.

Integrate
The modules must be combined to create a functioning program. At this point
is important to test routines which are designed to respond to specific
conditions. These routines include interrupt service and watchdog support
routines. The entire program should now be thoroughly tested.

55

5. First Look at a C Program
Traditionally, the first program a developer writes in the C language is one
which displays the message Hello World! on the computer screen. This is
a sensible beginning for traditional C platforms where conventional input and
output are important and fundamental concepts.

In the world of 8 bit microcontrollers device input and output play radically
different roles. Programs rarely have access to keyboard input or screen output
devices which are common in traditional C programming 3.
The following introductory program is representative of microcontroller
programming. The program tests to see if a button attached to a controller port
has been pushed. If the button has been pushed, the program turns on an LED
attached to the port, waits, and then turns it back off.
#include <hc705c8.h>
// #pragma portrw PortA @ 0x0A; is declared in header
// #pragma portw PortADir @ 0x8A; is declared in header
#define INPUT 1
#define OUTPUT 0
#define ON 1
#define OFF 0
#define PUSHED 1

void wait(registera); //wait function prototype

void main(void){
 PortADir.0 = OUTPUT; //set pin 0 for output (light)
 PortADir.1 = INPUT; //set pin 1 for input (button)
 while (1){ // loop forever
 if (PortA.1 == PUSHED){
 wait(1); // is it a valid push?
 if (PortA.1 == PUSHED){
 PortA.0 = ON; // turn on light
 wait(10); // delay (light on)
 PortA.0 = OFF; // turn off light
 }
 }
 }
} //end main

Example 6: A typical microcontroller program

3 Most C compilers for 8 bit microcontrollers do not use stdio libraries as these
libraries provide functions for input and output rarely used on 8 bit machines.

First Look at a C Program

56

It is not necessary to understand the specifics of the sample program at this
point. It is more important that you become familiar with some of the basic
concepts involved in C program development.

The following sections provide a general explanation of the C program in
Example 6.

5.1 Program Comments

A good programmer includes comments throughout a program. Comments
help to explain what the code is doing at a particular point and often state what
specific symbols or operations represent.

C compilers use slash and asterisk combinations as comment delimiters. When
the compiler encounters a slash immediately followed by an asterisk , /*, it
treats every character following this pair as a comment until an asterisk
immediately followed by a slash, */, is encountered.

Most modern C compilers also accept C++ comment syntax. If the compiler
reaches a slash immediately followed by another slash, //, in the source code it
treats the rest of that line as a comment. The C++ convention is more readable
and easier to debug because the effect of the comment syntax does not carry
over from one line to the next as in traditional C.

All comments in code examples provided throughout this book use C++ style.
If you have a compiler which does not support this comment syntax, you must
replace every // with /* and place */ at the end of the comment.

NOTE
Always comment your code. Even if you are sure no other programmer will ever
look at your code, a near impossibility, you will still need to understand it. You will
often rework code months and even years after it was originally written. Comments
drastically improve code readability.

5.2 Preprocessor directives

 Example 6 contains three preprocessor directives: #include, #define,
and #pragma. Preprocessor directives are specific instructions given to the
preprocessor. Preprocessor directives are always preceded by the # character
which is referred to as a hash mark. These directives are used as follows:

 Preprocessor directives

57

#include <hc705c8.h>
#include is one of the most commonly used preprocessor directives. When
the preprocessor reaches this directive it looks for the file named in the
brackets. In the example above the preprocessor searches for the file
hc705c8.h which contains device specific specifications for the Motorola
68HC705C8.

If the file is found the preprocessor will replace the #include directive with
the entire contents of the file. If the file is not found the preprocessor will halt
and give an error.

In the example the #include directive is used to include the contents of a
header file. By convention, C language header files have the .h extension.
Header files contain information which is used by several different sections, or
modules, of a C program as they contain preprocessor directives and
predefined values which help to describe the resources and capabilities of a
specific target microcontroller.

#define ON 1
#define OFF 0

#define is another commonly used preprocessor directive which is used to
define symbolic constants. Programs often use a constant number or value
many times. Instead of typing in the actual number or value throughout the
program, you can define a symbol which represents the value. When the
preprocessor reaches a #define directive, it will replace all the occurrences of
the symbol name in your program with the associated constant. Constants are
useful for two specific reasons:

1) Increasing program readability. A symbolic name is more descriptive
than a number. For instance, the name ON is easier to understand than the
value 1. Using symbolic constants enhances the readability of your
programs and makes them easier to test, debug and modify.

2) Increasing program modifiability. Since the symbolic constant value is
defined in a single place, only one change is necessary if you wish to modify
the value: in the #define statement. Without the #define statement it
would be necessary to search through the entire program for every place
the value is used and change each one individually.

In the statements #define ON 1 and #define OFF 0, the symbols ON
and OFF are assigned the values 1 and 0 respectively. Everywhere the

First Look at a C Program

58

preprocessor sees the symbol ON it will replace it with the constant 1; where it
sees OFF it will replace it with the constant 0.

#pragma portrw PortA @ 0x0A;
#pragma portw PortADir @ 0x8A;

The preprocessor handles #pragma directives in a slightly different fashion
than other preprocessor directives. #pragma directives instruct the compiler
to behave in a certain way based on the description of the hardware resources
of the target computer. #pragma statements are most often used in header
files which provide the hardware specifications for a particular device.

#pragma port directives, for example, describe the ports available on the
target computer. The description includes details on port location, whether they
are read, write or read/write and the names the program uses to access ports.

In the excerpt from Example 6 shown above, the compiler is informed that
two ports are available. The name PortA refers to physical port A’s data
register, which is available for reading and writing and is located at address
0x0A. The name PortADir refers to physical port A’s data direction register,
which is available for writing only and is located at address 0x8A.

5.3 C Functions

C programs are built from functions. Functions typically accept data as input,
manipulate data and return the resulting value. For example, you could write a
C function that would take two numbers, add them together and return the sum
as the result.

5.3.1 The main() function

When a computer runs a C program, how does it know where the program
starts? All C programs must have one function called main()which is always
the first function executed.

Notice the notation for main(). You specify a function name by following
the name with parentheses. This is the notation used by the C compiler to
determine when it has encountered a function. As long as the name is not a
recognised C command, called a reserved word, the compiler will assume it is a
function if it is immediately followed by a pair of parentheses. The parentheses
may also surround a list of input arguments for the function.

 C Functions

59

void main(void){
//function statements

}
Example 7: Syntax for the main() function

Example 7 is the definition for the main() function in Example 6. All the
statements that fall between the two braces, {}, have been omitted for
example purposes.

The first use of the term void, prior to the word main, indicates to the
compiler that this main() function does not return any value at all. The
second use of the term void, between the parentheses, indicates to the
compiler that this main() function is not sent any data in the form of
arguments.

Braces must surround all statements which form the body of a function. Even
functions with no statements in their body require the braces – the braces after
a function header indicate to the compiler that you are providing the definition
of a function.

5.3.2 Calling a Function

The main() function can execute code from other functions. This is referred
to as calling another function. The calling function must know about the called
function in order to execute its code. A function knows about another function
in two ways:

1) The entire definition of the called function is positioned earlier in the
source file than the calling function.

2) A function prototype of the called function is included before the calling
function in the same source file.

A function prototype describes details of the requirements of a function so
that any program code that calls that function will know what information the
called function requires. The following is a typical function prototype:
void wait(registera);

The example above is a function prototype for a function called wait(). This
function is preceded by the return value void; therefore, it does not return a
value. Unlike main(), the wait() function does expect to receive an
argument, called a parameter. The type of the parameter (registera) is

First Look at a C Program

60

important. It indicates the type of value the parameter will hold – a value of
type registera.

5.4 The Function Body

Every function definition has a function header. A function header describes
what type of value the function returns, the name of the function, and what
input arguments it expects. The body of the function follows the function
header. The function body contains a set of statements between braces which
are executed when the function is called. There are several different types of C
statements.

5.4.1 The Assignment Statement

One of the simplest and most common statements in C is the assignment
statement. An assignment statement takes the value of the expression on the
right of the equal sign and assigns it to the symbol on the left side of the equal
sign. For example:

PortADir.0 = OUTPUT;
PortADir.1 = INPUT;

Example 8: Using the C assignment statement

In Example 8 the symbols PortADir.0 and PortADir.1 refer to the
first two bits of the port associated with the name PortADir.

The first statement assigns the numeric value of the expression on the right of
the equal sign to bit 0 of PortADir, which represents the port A direction
register. From the #define directives we know that OUTPUT is really a
symbolic constant associated with the value 0. Therefore, this assignment
statement clears bit 0 of the port A direction register.

By contrast, the second assignment statement sets bit 1 of the port A direction
register. How? Recall that INPUT is a symbolic constant associated with the
value 1 in a #define statement.

5.4.2 Control statements

Control statements allow decisions to be made to determine which statements
are executed and how often. For example, suppose you need to write a set of
instructions for making coffee in a coffee maker. The amount of water you

 The Function Body

61

pour into the coffee maker depends upon the number of cups you want to
make. At some point in your instructions, you need to allow the person
following them to make a decision about the number of cups needed and,
therefore, the amount of water needed. You might say: “if you want to make 4
cups of coffee, then use 5 cups of water”.

In C decisions are made using control statements. Control statements can select
between two or more paths of execution and repeat a set of statements a given
number of times. Some common control statements are:

while
while(1){

// statements
}

The while() control statement instructs the computer to repeat a set of
instructions (loop) as long as a condition is valid. The condition is an
expression placed in the brackets which follow the while statement. C
considers any condition which does not evaluate to 0 to be true and any
condition which does evaluate to 0 to be false.

In Example 6 the condition is the integer 1b (binary), which is interpreted as
true. Therefore, once the computer begins to execute statements inside the
braces of the while loop, it will not terminate until the computer
malfunctions or is turned off. This kind of loop is often called an infinite loop.

In traditional C programming, an infinite loop is usually avoided. However, it is
often used in embedded systems programming. An embedded controller
typically executes a single program “infinitely”. Only when the controller is
reset or turned off will the loop terminate.

if
if (PortA.1 == PUSHED){
 PortA.0 = ON;
}

Example 9: The if statement syntax

The if() statement provides the ability to make decisions. If the if
statement condition is true then the computer executes the statements in the
if body. In Example 9, the value of PortA.1 is compared with the value of
PUSHED, if data bit number 1 is set (has the value 1) then the program will
execute any statements in the if body. The body statement sets port A data
bit number 0 by assigning it the value of ON.

First Look at a C Program

62

while (1){
 if (PortA.1 == PUSHED){
 PortA.0 = ON;
 }
}

Example 10: Nesting if and while statements

When the if decision is placed inside a while loop, the program will test bit
1 in PortA regularly. Assume a button is attached to pin 1 of port A and an
LED to pin 0 of PortA. We have written a small control program which will
continually test the button attached to pin 1. When the button is pushed, bit 1
of PortA will be set. When bit 1 is set and the if statement is executed, bit 0 is
set. The LED attached to PortA pin 0 will be set to 1 and will light up.

5.4.3 Calling Functions

A program can delegate a task by calling another function. Once the program
turns on the LED in Example 10 it never turns it off. Remember, the while
loop is an infinite loop. How can we solve this problem?

One solution is to write a function called wait()which creates a delay and
then turn the LED off. Consider the following example code fragment:

while (1)
{
 if (PortA.1 = PUSHED)
 {
 PortA.0 = ON;
 wait(10); \\ wait ten seconds
 PortA.0 = OFF;
 }
}

Example 11: Calling one function from another

When the wait() function is used and the button is pushed, the program
turns the LED on by setting bit 0 of PortA. The wait() function causes a
delay of ten seconds. After the wait function has finished and ten seconds have
passed, the program turns off the LED by clearing bit 0 of PortA.

5.5 The Embedded Difference

Several things make the program in Example 6 typical of embedded systems
programs in C.

 The Embedded Difference

63

5.5.1 Device Knowledge

Most embedded systems programs include a header file which describes the
target processor. These header files contain descriptions of reset vectors, ROM
and RAM size and location, register names and locations, port names and
locations, register bit definitions and macro definitions. Most compiler
companies will provide header files for devices supported by their compilers.

Another important aspect of device knowledge is the limits of the device for
which the program is written. For example, a certain device may have very
limited memory resources and great care must be taken in developing programs
which use memory frugally. Along with issues of size comes issues of speed.
Different devices run at different speeds and use different techniques to
synchronise with peripherals. It is essential that you understand device timing
for any embedded systems application.

5.5.2 Special Data Types and Data Access

Embedded systems developers require direct access to registers such as the
accumulator. In Example 6 the wait() function is called with an argument
of type registera. This is a special type which represents the accumulator.

Embedded developers are much closer to their target hardware then other
programmers. They often access and control the basic hardware of the device
they are programming.

5.5.3 Program Flow

The previous section mentioned the regular use of the infinite loop
while(1). Embedded developers often use program control statements
which are avoided by other programmers. For example, the goto statement is
used regularly by embedded developers and is often condemned by other
programmers.

5.5.4 Combining C and Assembly Language

Many developers prefer to write some code segments in assembly language for
reasons of code efficiency or while converting a program from assembly
language to C. Most compilers for 8 bit microcontrollers allow the inclusion of
inline assembly, assembly language in a C program.

First Look at a C Program

64

The following two definitions of the wait() function show the function
written in C and the equivalent function in Motorola 68HC705C8 assembly
language.
//C function
void wait(registera delay){
 while (--delay);
}

//function with inline assembly
void wait(registera){
 char temp, time;
// ocap_low and Ocap_hi are the output compare register
//this register is compared with the counter and the ocf
//bit is set (bit 6 of tim_stat)
#asm
 STA time ;store A to time
 LDA #$A0 ;load A with A0
 ADD ocap_low ;add ocap_low and A
 STA temp ;store A to temp
 LDA #$25 ;load A with 25
 ADC ocap_hi ;carry + ocap_hi + accumulator
 STA ocap_hi ;store A to ocap_hi
 LDA temp ;load temp to accumulator
 STA ocap_low ;store a to ocap_lo
LOOP BRCLR 6,tim_stat,LOOP ;branch if OCF is clear
 LDA ocap_low ;load ocap_lo to A
 DEC time ;subtact 1 from time
 BNE LOOP ;branch if Z is clear
#endasm
}

Example 12: C functions containing inline assembly language

5.5.5 Mechanical Knowledge

Techniques used in an embedded system program are often based upon
knowledge of specific device or peripheral operation. For example, Example 6
calls the wait() function with a value of 1 after it has detected that the
button is pushed and then checks to see if the button is still pushed. The code
is written in this manner to deal with the issue of contact bounce.

When a button is pressed it “bounces” which means that it is read as several
pushes instead of just one. It is necessary to include debouncer support in order
to ensure that a real push has occurred and not a bounce. The wait() function
creates a delay before the button is checked again. If the button is no longer in
a pushed state then the push is interpreted as a bounce and the program waits
for a real push.

65

6. C Program Structure
The previous section described some typical features of a very simple program.
In this section we will examine in greater detail the building blocks of the C
language.

A C program is built from three components:

1) Directives are directives handled directly by the preprocessor

2) Declarations are instructions for the compiler to record the type
and associated memory locations of symbols

3) Statements are the executable instructions in a program

6.1 C Preprocessor Directives

The simple C program shown in Example 6 in the previous section introduced
several preprocessor directives:

"# #include directives include the contents of another file

"# #define directives define symbolic constants

"# #pragma directives describe details of the target hardware

Section 13, The C Preprocessor, provides a detailed explanation of the
preprocessor.

6.2 Identifier Declaration

Declarations define the name and type of identifiers used in your program. One
benefit of programming in a high level language is the ability to construct
generic groups of instructions, called functions, to perform tasks whose steps
are not dependant upon specific values. For example, you can write
instructions to add together two numbers without knowing the values of the
numbers. How can this be done? Through the use of identifiers.

An identifier can either represent a value, called a variable, or a group of
instructions, called a function. C identifiers represent addresses in computer

C Program Structure

66

memory. At a given memory location the computer can store a value, or a
group of program instructions.

6.2.1 Identifiers in Memory

The compiler allocates memory for all identifiers. As the compiler reads a
program, it records all identifier names in a symbol table. The compiler uses the
symbol table internally as a reference to keep track of the identifiers: their name,
type and the location in memory which they represent.

When the compiler finishes translating a program into machine language, it will
have replaced all the identifier names used in the program with instructions that
refer to the memory addresses associated with these identifiers.

6.2.2 Identifier names

An identifier name can be any word beginning with a letter or underscore
character. The rules for naming identifiers are quite straightforward. An
identifier can be almost any word that begins with a letter or underscore
character, followed by 0 or more letters, numbers or underscore characters.

$$$$ An identifier can not be a C keyword
The C language has keywords which the compiler reserves because they have
special meaning in the language. For example, the word if is used to signify
the beginning of a decision block. A keyword may not be used as an identifier
name. Some standard keywords in C are:
auto default if short union
break do int signed unsigned
case else long static void
char enum main struct volatile
const extern pointer switch
continue for return typedef

Example 13: Common C keywords

Compilers that provide special enhancements or extensions to the language will
add keywords to this list, so you must check the documentation for your
particular compiler to find out what other words not to use for identifier
names.

 Identifier Declaration

67

$$$$ Identifiers only have certain significant characters
Most compilers support identifier names of at least 31 characters in length. This
allows you to use precise and meaningful names for variable and function
names. However, to conserve memory a compiler will often only consider some
characters in an identifier name as significant. This means that two identifiers
which may seem different are treated as the same symbol by the compiler. For
example, a compiler which only considered the first 5 characters of an identifier
as significant would treat the following two identifiers as if they were the same
symbol:

PortADir
PortA

Notice that even though the two identifiers are different words, the first five
significant characters are identical.

6.2.3 Variable Data Identifiers

Identifiers which represent variable data values, called variables, require
portions of memory which can be altered during the execution of the program.
The compiler will allocate a block of its data memory space, usually in RAM,
for each variable identifier.

For example, the declaration int currentTemperature; for the
variable currentTemperature will cause the compiler to allocate a single
byte of RAM.

The keyword int in the variable declaration tells the compiler that
currentTemperature will contain an integer value and will require a
single byte of RAM to contain this value.

6.2.4 Constant Data Identifiers

Identifiers which represent constant data values are allocated from computer
program memory space. Identifiers which represent constant data values do not
require alterable memory: once the value of a constant has been written in

C Program Structure

68

memory it need never change. Therefore, the compiler will allocate a block of
its program memory space, usually in ROM, for each of these identifiers4.

To declare a constant data value, use a declaration such as:
const int maximumTemperature = 30;

This declares a variable called maximumTemperature and sets its initial
value to 30. The keyword const tells the compiler that the identifier is a
constant and that a single byte in ROM should be reserved to contain the value
30. When the identifier maximumTemperature is used in the program it
refers to the memory location in ROM which contains the value 30.

6.2.5 Function Identifiers

Function identifiers are not altered during program execution. Once the value
of a function has been written in the computer’s memory it need never change.

When a function is defined, the compiler places the program instructions
associated with the function into ROM. What happens to the local variables
used in a function’s body of statements? The compiler will write in the data
memory addresses where local variable values will be stored in RAM when the
program runs.

6.3 Statements

When a program runs it executes program statements. Declarations describe the
memory locations which statements can use to store and manipulate values.

The most frequently used statement in any programming language is the
assignment statement. C provides many different ways to construct an
assignment statement; however, the following example shows the simplest way:

currentTemperature = 20;

The compiler will generate an instruction to store the value 20 in the RAM
memory location set aside for the currentTemperature variable.

4 This is not always the case. However, you can safely assume that all C constant
values are stored in machine program memory space.

 Statements

69

6.3.1 The Semicolon Statement Terminator

All statements in C must end with a semicolon. C uses the semicolon as a
statement terminator5. One of the most common errors in C programming is
an extra, missing or misplaced semicolon. If you leave out a semicolon the C
compiler will not know where a statement should end.

For example, suppose you wrote the following two statements. The compiler
would produce an error. Why?

currentTemperature = 20
currentTemperature = 25;

Forgetting the semicolon at the end of the first line forces the compiler to read
both lines as one statement instead of two. According to the compiler you have
written the following instruction:

currentTemperature = 20 currentTemperature = 25;

Notice that the C compiler does not care about white space between tokens as
it reads through your program. White space includes space, tab and end-of-line
characters. On some computers the end of line will be a single linefeed
character, while on others it will be a linefeed and carriage return together. C
compilers ignore both carriage returns and linefeeds.

6.3.2 Combining Statements in a Block

When you write a C function you must include function statements as part of
the function definition. Statements belonging to a function are indicated by
surrounding them with braces which immediately follow the function header.
For example, Example 6 in the previous section has braces surrounding all the
statements in the main() function.

You may create statement blocks at other times in your program. For example,
notice the braces after the while and if statements:
while (1){ // this brace begins the block for while
 if (PortA.1 = 1){ // this brace begins the if block
 PortA.0 = 1;
 wait(10);
 PortA.0 = 0;
 } // this brace closes the block for if

5 Unlike languages PASCAL-like where the semicolon is used as a statement
separator.

C Program Structure

70

} // this brace closes the block for while
Example 14: Using braces to delineate a block

The general format for the while statement looks like:
while (condition) statement;

However, since you can substitute a statement block anywhere a single
statement can occur, the most commonly used form of the while statement
looks like:

while (condition){
 statements
}

Example 15: The while loop

It is good programming practice to use braces whenever you use a loop or
conditional construct such as while and if, even with a single statement
block. The braces ensure that anyone reading your program code can tell exactly
which statements belong to the while or if.

71

7. Basic Data Types
It is easy to see how the computer stores binary values in memory as that is the
manner in which its memory is structured. We have also seen how the
computer stores other types of numbers, such as hexadecimal and decimal, by
converting them to binary form. This section examines how other types of data
can be used.

7.1 The ASCII Character Set

A computer can store a number in its memory. What about a character? People
use alphabets to encode linguistic information while computers must use binary
notation. To resolve this problem, computer programmers have settled on
encoding schemes for representing characters with numbers such as ASCII
(American Standard Code for Information Interchange) encoding. In the ASCII
character set each character is associated with an integer value. When the
computer needs to store a character it uses the ASCII integer value associated
with that character and stores the number in binary notation.

7.2 Data types

Data types act as filters between your program and computer memory. Data
types in C provide rules for the storage and retrieval of information from
computer memory. C data types also provide a set of rules for acceptable data
manipulation.

The primary distinguishing characteristic of a data type is its size. The size of a
data type indicates the amount of memory the computer must reserve for a
value of that type. For example, on 8 bit microcontrollers the int data type
(used for storing integer values) is a single byte in size6 while a long or long
int data type is two bytes in size. When the compiler translates a program it
must write the instructions to account for this size difference. The computer

6 The size of the int data type in C is the same as the amount of information the
computer can process. Since 8 bit microcontrollers work with a byte at a time the size
for int is 1 byte (or 8 bits). On most modern computers int varies from 24 bits to 64
bits.

Basic Data Types

72

will know to set aside a single byte for all the int values in your program and
two bytes for all the long values.

7.3 Variable Data Types

When you declare an identifier used in your program, either as a variable or a
function, you specify a data type as part of the declaration. The compiler will
allocate the appropriate amount of computer memory for use with each
identifier.

It is possible to declare a number of variables of the same type in the same
declaration by including a list of identifier names separated by commas. Good
programmers will most often use this method for declaring a group of variables
that serve a similar function within the program. A typical case is a group of
counters the programmer will use to regulate the control of program flow
through loops:

int currentTemperature;
char tempScaleUsed;
long TempDifference;
int count1, count2, count3;

Example 16: Declaring variable types

A declaration can also be used to ensure that a variable will be assigned a certain
value when it is allocated. When this is done the compiler allocates the
appropriate space for the variable and immediately assigns a value to that
memory location, for example: int currentTemperature = 20;
allocates 1 byte for the variable currentTemperature and assigns it the
value 20. This is called initializing the variable.

Initialization ensures that a variable contains a known value when the computer
executes the first statement which uses that variable. If variables are not
initialized in their declarations, their values are unknown until they are
initialized.

7.3.1 Variable Data Type Memory Allocation

When the compiler comes across a variable declaration it checks that the
variable has not previously been declared and then allocates an appropriately

Basic Data Types

73

sized block of RAM. For example, an int variable will require a single word (8
bits) of RAM or data memory7.

When the compiler allocates memory for a variable it decides where to place the
variable value based on the existing entries in its symbol table. Since the
compiler cannot know what value lies at the address allocated for a particular
variable at compile-time, you can not depend upon a specific value for a
variable the first time it is used.

Compile-time is the point at which the compiler translates a program into
machine code. Run-time indicates the point at which the machine code is
executed on the host computer. It is useful to remember that compilers have
little or no knowledge about a machine’s internal state at run-time.

Declarations that initialise variables are very useful – they ensure that you can
predict what a variable memory location will contain at run-time. When the
compiler reads a declaration which also initializes a variable it first allocates an
appropriate block of memory, then immediately loads the appropriate value into
that location.

Please note that variable declarations which contain an initialization will
automatically generate machine code to place a value at the address allocated for
the variable. Normal variable declarations do not generate any code because the
machine code contains the address allocated for such a variable. This is not the
case for either global variables or static local variables – if they are not initialized
in their declaration the compiler will initialize them by setting their initial values
to 0. The compiler will produce machine instructions to load the 0 value into
the appropriate addresses.

7.3.2 Variable Scope

Not all parts of a program recognize declared variables. The visibility of a
declared variable is called the variable’s scope. If a portion of a program lies
outside a variable’s scope then the compiler will give an error if you refer to the
variable in that portion. The scope of a variable includes the locations in a
program where the variable is a recognized and meaningful symbol. Outside
that scope the variable is an unknown or undefined symbol.

7 The amount of memory required for an integer variable varies from computer to
computer. 8 bit microcontrollers have a natural integer size of 8 bits.

Basic Data Types

74

7.3.3 Global Scope

If you declare a variable outside all statement blocks, the scope of the variable
reaches from its declaration point to the end of the source file. Variables
declared in this manner are called global variables because they can be used by
any program code which comes after them in the same source file.

 A variable declared outside a statement block can be accessed by any statement
in your program by declaring the variable in a certain way. In order for a
statement block or separate program file to access to such a variable, it must be
declared as an external symbol. This means using the extern storage class
modifier. For example, the following declaration tells the compiler to look for
the original declaration of currentTemp in another file or below in the same
file: extern int currentTemp;.

The use of extern in a variable declaration is similar to the use of a function
prototype – it informs the compiler of a variable’s name and data type so that it
can be used before it is actually defined. As with function prototype
declarations, the compiler does not allocate memory when it sees an extern
variable declaration.

7.3.4 Local Scope

A variable declared inside a statement block has a scope from the declaration to
the end of the statement block. Variables declared inside a statement block are
called local variables, as they are accessible only to statements which follow
them within the same statement block. Typically, programmers will declare
variables whose scope is local to a specific function. The variable name and
value will be defined only within that function and other functions cannot
directly refer to the variable.

7.3.5 Declaring Two Variables with the Same Name

What happens if you have two functions which each contain local variables with
the same name? Since a variable is local to its respective functions the compiler
can distinguish between identically named variables. A variable name must be
unique within its scope.

What happens when scopes overlap? The most recently declared instance of a
variable is used. If you declare a global variable called temp outside all
statement blocks and a local variable called temp inside your main()

Basic Data Types

75

function, the compiler gives the local variable precedence inside main().
While the computer executes statements inside main()’s scope (or statement
block), temp will have the value and scope assigned to it as a local variable.
When execution passes outside main()’s scope, temp will have the value and
scope assigned to it as a global variable.

7.3.6 Why Scope is Important

Why is scope an important concept? It can provide tangible benefits to
programmers.

Since C is a function-oriented language where programs are built from
collections of functions, variable scope promotes data abstraction. Variables
declared inside a function remain local to that function only. Other functions in
the program can use identical local variable names without creating conflicts.
This means that you can use functions in your program and only know about
the function interface. It is not necessary to see inside a function to use it in a
program, it is only necessary to know what to pass in and what will be returned.

Data abstraction allows a programmer to create a function which others can
make use of the without seeing the function source code. This may sound
dangerous but all C compilers take advantage of this principle. The standard
library functions available with all C compilers depend upon data abstraction to
be useful – programmers include standard library functions in their code all the
time without worrying about potential variable name conflicts.

7.4 Function Data Types

A function data type allocates memory for the type of value the function
returns. Function identifiers work differently than variables. When a function is
defined a data type for the function must be included. Instead of indicating the
amount of memory set aside for the function itself it indicates the amount of
memory the compiler needs to reserve for the value returned by the function.
For example, a function of type int returns a signed integer value and 8 bits
are reserved for the return value.

Suppose we have a function defined as follows:
void wait(int timeInSeconds);

The void keyword indicates to the compiler that the function will not return a
value; therefore, no memory is allocated for a return value.

Basic Data Types

76

7.4.1 Function Parameter data types

Parameter data types indicate the size of memory reserved for function
parameter values. We define a data type for the parameter the function expects
to be passed when it is called. The declaration of timeInSeconds as an
int in the function declaration void wait(int timeInSeconds);
tells the compiler to allocate a single byte to hold the parameter value when the
function is called.

The void keyword can also be used in a function parameter list:
void main(void);

This indicates to the compiler that the function does not expect to receive any
parameter values when called. The compiler does not allocate any memory for
void parameters.

7.5 The Character Data Type

The C language character data type, char, stores character values and is
allocated 1 byte of memory space. Microcontrollers do not often manipulate
alphabetic information, but sometimes it is required. The most common use of
alphabetic information is reading input from a keyboard device, where each key
typed is indicated by a character value. The char type uses a single byte of
memory and stores the value of each character by storing its ASCII code.

7.5.1 Assigning a character value

When assigning a character value to an identifier you must place the character in
single quotes. The quotes tell the compiler that the value is a character constant
and not the name of another identifier.

char firstLetter;
firstLetter = 'a';
firstLetter = a;

Example 17: Assigning a character value

The first assignment in the example above places the ASCII value for the
character a in the memory location assigned to the firstLetter variable.
When the compiler reads the second assignment statement, it assumes that a is
the name of a second variable. If no variable called a exists the compiler will
generate an error.

Basic Data Types

77

7.5.2 ASCII Character Arrangement

The order in which ASCII arranges its characters is called its collating
sequence. The collating sequence is arranged so that the letters 'A' through 'Z'
are in unbroken, ascending order with the decimal values 65-90, as are the
letters 'a' through 'z' with the decimal values 97-122. In addition, the digits '0'
through '9' are in unbroken, ascending order with the decimal values 60-71. The
collating sequence allows for easy sorting of characters and the use of
characters in simple arithmetic operations.

7.5.3 Numeric Characters

Numeric characters are not the same as integer values. It is important to
understand that the character '3' is not the same as the integer 3. In fact, the
ASCII decimal integer associated with the character '3' is 51.

It is also important to remember that the upper case alphabetic characters have
lower integers associated with them than do the lower case characters; 'A' and
'a' are not the same character. A side effect of this property leads to logical
comparisons of character values sorting capital letters before their lower case
counterparts. The expression (A < a) will therefore evaluate to true.

7.5.4 Escape Sequences

You can specify any character in the ASCII set with a special escape sequence –
a backslash immediately followed by the octal or hexadecimal ASCII value for
the character8. This supports character values that can not be typed using a
keyboard.

You can represent common special characters using escape sequences. For
example, the escape sequence to produce the carriage return character, the
character produced when someone types the e key, is \r.

Escape sequences are useful for typing a literal character that the C compiler
might interpret in another way. For example, to type a literal single quote

8 For historical reasons you can not specify a decimal ASCII value in an escape
sequence. The general format for the escape sequence is as follows:

\### // octal value
\x## // hexadecimal value

Basic Data Types

78

character and avoid the compiler interpreting it as a character constant delimiter
simply precede it with a backslash, \'. To assign the single-quote character to a
char variable use the statement char singleQuote = '\'';.

7.6 Integer Data Types

Integer values can be stored as int, short or long data types. The default
size for a number on most microcontrollers is 8 bits (a single byte). Therefore,
the int data type for these computers requires a single byte of storage. Some
compilers offer the ability to switch to using 16 bit integers by default. The size
of int values usually equals the natural data size of the target computer.

7.6.1 Integer Sign Bit

C allows you to manipulate both positive and negative integer values and uses
different methods to store each value in memory. Signed integer values have the
left-most bit reserved for a sign bit. The state of the sign bit indicates whether
the stored value should be treated as a positive or negative value.

The existence of a sign bit means that there are only 7 bits left in which to store
the actual value of the integer. An 8 bit signed int value can therefore range
from -27 to 27-1. There is one more value available on the negative side of zero
because zero itself counts as a positive value.

7.6.2 The short Data Type

On many traditional C platforms, the size of an int is more than 2 bytes. The
short data type helps compensate for varying sizes of int. On platforms
where an int is greater than 2 bytes, a short should be 2 bytes in size.

On platforms where an int is 1 or 2 bytes in size —most microcontrollers—
the short data type will typically occupy a single byte. This can be useful for
embedded system programmers, especially on systems which provide a switch
to “turn on” 16 bit int values. In these cases, you can maintain code
portability by using short for those values that require 8 bits and long for
values which require 16 bits.

Like the int, the short data type uses a sign bit by default and can therefore
contain negative numbers.

Basic Data Types

79

7.6.3 The long Data type

Should your program need to manipulate values larger than an int, you can
use the long data type. On most platforms the long data type reserves twice
as much memory as the int data type. On 8 bit microcontrollers the long
data type typically occupies 16 bits; this allows the representation of signed
integers ranging from -215 to 215-1.

It is important to note that long integer values are almost always stored in a
memory block larger than the natural size for the computer. This means that
the compiler must typically generate more machine instructions when a
program uses long values. Programs will usually operate more quickly and
efficiently if they only use 8 bit data types.

7.6.4 Different Notations

Integer data types usually hold values expressed in decimal notation. It is also
possible to express an integer value in other notations. For example, the
following declarations assign the same value to their respective variables
expressed in different notations: All C compilers allow the expression of integer
values in decimal, octal and hexadecimal notation. The ability to express values
in binary notation is an enhancement to the language not available on all
compilers.

int decimalInt = 32;
// all octal values begin with 0
int octalInt = 040;
// all hex values begin with 0x
int hexadecimalInt = 0x20;
// all binary values begin with 0b
int binaryInt = 0b00100000;

Example 18: Octal, hex and binary notation

Be careful to maintain the distinction between the value assigned to a variable,
and the notation used to write that value. Remember that the computer uses a
series of binary bits to store all the numbers your program uses regardless of
the notation used when you write your program.

7.7 Data Type Modifiers

So far we have seen two general classes of simple data types: the character data
type char and the integer data types int, short and long. By default, the

Basic Data Types

80

char type holds values from 0 to 255 and does not permit any negative values.
However, int data types permits a range of both negative and positive values.

The C language allows you to modify the default behaviour of simple data types
and thereby produce char variables which can hold negative numbers and
integer variables which permit only positive values.

7.7.1 Signed and Unsigned

The data type modifiers signed and unsigned allow you to specify
whether you wish a variable to hold negative numbers or not. They instruct the
compiler whether or not to include a sign bit in the allocated memory.

By default, char variables are unsigned and cannot hold negative values.
Also by default, integer variables (int, short and long) are signed and
can hold negative values. Actually, the short and long types are not data
types, they are data type modifiers. As a result, you often see declarations such
as:

short int myShortInt;
long int myLongInt;

Because int is the default data type in C you can simply declare variables as
short and long. Some programmers insist that you should never take this
short cut. However, some compilers actually implement the short and long
as separate data types.

Place modifiers before the data type in a variable declaration. For example:
unsigned int myAge;

7.7.2 Other Data Type Modifiers

There are several data type modifiers available:
auto const extern far
near signed static unsigned
volatile

Example 19: Data type modifiers

7.8 Real Numbers

While many computers make extensive use of real, or floating point numbers
(numbers with digits on both sides of the decimal place) 8 bit microcontrollers

Basic Data Types

81

do not. The resources needed to store and manipulate floating point numbers
can place overwhelming demands on an 8 bit computer and usually the value
gained is not worth the resources expended. Some C compilers for 8 bit
microcontrollers offer limited support for floating point data types, but most
do not.

7.8.1 The float Data Type

The fundamental data type for representing real numbers in C is the float
type. Those compilers that do offer this data type store real numbers as
floating point values – a special way of representing real numbers in computer
memory. The maximum value for the target computer is defined in a C header
file called values.h as a symbolic constant called MAXFLOAT.

7.8.2 The double and long double Types

C compilers generally allocate 4 bytes for a float variable – you can see why 8
bit microcontrollers might have difficulty handling such values– which provides
approximately 6 digits of precision to the right of the decimal. You can have
greater precision with the double and long double data types. Compilers
typically allocate 8 bytes for a double variable and more for a long
double. There are approximately 15 digits of precision with double values
and perhaps more from long double values.

7.8.3 Assigning an Integer to a float

You can assign an integer value to a floating point data type but you must
include a decimal and a 0 to the right of the decimal.

myFloatVariable = 2.0

83

8. Operators and Expressions
The chief purpose of programming is providing the computer with a set of
generalized instructions for solving problems. This concept is so important to
programming that programmers use a specific name for a set of generalized
instructions – the term algorithm. In fact, many programmers insist that
programming consists of two simple steps:

1) Choosing suitable data structures to contain and organize program
data

2) Choosing the appropriate algorithm to manipulate that data.

Once you have determined variable and function data types it is time to
examine how the functions will manipulate the data.

8.1 Operators

Variables and functions contain and pass values among program modules.
Operators allow you to perform calculations with these values. C has more
operators than most other programming languages.

When you write a program in any language a significant portion of the program
is dedicated to doing simple data manipulation such as incrementing or
decrementing counters and multiplying or dividing a variable by a number. In
most languages these simple manipulations require a statement of some length
or more than one statement. C encapsulates many of the most common simple
data manipulations in its operator set.

For example, consider incrementing a counter. In most programming languages
the following statement is required to increment a counter.

counter = counter + 1;

In C incrementing can be done with the following statement:
counter++;

The original purpose of the increment operator was to create faster and more
efficient code. Most computers have a low level hardware instruction which
performs a simple increment upon a value. This instruction uses less resources

Operators and Expressions

84

than the instructions required to add two numbers together and assign the
result to a third which is the case in the first example.

Modern compilers are quite sophisticated, especially in the optimization of code
during translation to machine language. Most compilers will see the first
example written in a program and translate it into the speedier machine-level
increment. Programmers who care about readability and clarity will insist upon
using the syntax of the first example and allow the compiler to generate the
faster and more efficient code.

Recent criticisms of C describe the operator set as overly large. It is true that
badly written C code tends to rely on the effects and side effects of operators,
making it very difficult to read and debug. Often these problems are a function
of bad programming style.

8.2 C Expressions

All calculations and data manipulation in are accomplished using expressions.
In C an expression is formed by combining operators, constants and variables.
The simplest expression in C is a single constant or identifier with no operators.
Imagine constants and identifiers as building blocks and operators as a set of
predefined ways to combine these blocks. An expression can be as simple as a
single block or it can consist of single blocks and additional operators. It is
possible to construct elaborate groups of blocks which are themselves
expressions.

An expression is converted to a statement by terminating it in a semicolon. The
following example shows a valid C statement:

5;

All C expressions have values9 which your program uses when the expressions
are evaluated. In the previous example, the value of the single expression in the
statement is 5. Operators work by acting upon the expression values. For
example, the + operator takes the value from one expression and adds it to the
value of another expression:

2 + 3;

9 This is not always the case. A call to a void function has, by definition, no value.
However in practical terms an expression always evaluates to some value.

Operators and Expressions

85

The combination of two expressions (2 and 3) with the addition operator forms
a single, larger expression. When the computer evaluates the entire expression,
its value consists of the sum of the two smaller expression values joined by the
addition operator, the value 5.

8.2.1 Binding

How does the compiler determine which expressions apply to each operator in
a program’s statements? The rules which govern operator behaviour specify the
number of expressions the operator requires – we indicate this relationship by
saying that an operator binds to a number of expressions. For example, an
operator that manipulates the value of a single expression binds to a single
expression.

8.2.2 Unary Operators

Operators that bind to a single expression are called unary operators. Some unary
operators bind to the expression to their immediate right – these are called
prefix unary operators where the operator act as a prefix to the bound
expressions. Other unary operators bind to the expression to their immediate
left. These are called postfix unary operators. For example:

a[6]; //postfix unary operator
a++; //postfix unary operator
++a; //prefix unary operator
&a; //prefix unary operator

Example 20: Postfix and prefix unary operators

8.2.3 Binary Operators

Operators that bind to two expressions are called binary operators. Binary
operators bind the expressions located to their immediate left and right. For
example, the addition operator used in our previous example is a binary
operator and uses the general form a+b.

a * b; //multiply two expressions
a / b; //divide two expressions
a - b; //subtract one expression from another
a + b; //add two expressions
a >> b; //shift bits right

Example 21: Sample binary operators

Operators and Expressions

86

8.2.4 Trinary Operator

C supports a single trinary operator which binds to three expressions. The
conditional operator ?: binds to three expressions, for example:

a ? b : c
Example 22: Trinary conditional operator

The compiler evaluates expression a, if it is true (non-zero) then the value of the
entire expression is the value of expression b. If expression a is false (zero),
then the value of the entire expression is the value of expression c.

8.2.5 Operator Precedence

Statements often contain more than one operator. For example, consider the
conversion from degrees Celsius to degrees Fahrenheit. The equation for this
operation is:

F C
C F
$% $& ' (
$% $&) (

()
()

2 2 30
30 2 2

The equivalent expressions in C can be written as:
Fahrenheit = Celsius - 2 * 2 + 30;
Celsius = Fahrenheit - 30 / 2 + 2;

Example 23: Combining operators in a statement

Note that the statements in Example 23 are ambiguous. Is Celsius reduced
by 2, then multiplied by two, then added to 30? This is the desired order of
operations; however, without any guidelines as to how to proceed, this
statement would not necessarily be executed as expected depending on which
operation is performed first.

In order to circumvent the problem of ambiguity, C provides a set of
precedence rules. These rules dictate the order in which expressions bind to
operators. The complete C precedence rules are available at the end of the
book. There are two simple rules which allow programmers to avoid creating
ambiguous expressions:

1) Multiplication and division operators bind before addition and subtraction

2) Brackets explicitly declare binding order

Operators and Expressions

87

Consider Example 23: the first rule tells us that multiplication and division are
done before addition and subtraction. This means that the expression 2 * 2
will be evaluated first. The result of this expression will then bind with the -
operator, along with + 30. Putting brackets around the first part of the
calculation explicitly demonstrates the desired order of operations:

Fahrenheit = (Celsius - 2) * 2 + 30;

The revised statement implements the second rule: the brackets leave the
compiler with no doubt about which part of the calculation to perform first.
More importantly, the brackets explicitly depict the programmer’s intentions.

8.2.6 The = Operator

The assignment symbol, =, is an operator and has a precedence. C also provides
more complex assignment operators which all share the same precedence as =.
Assignment operators have a lower precedence than most other operators,
therefore assignment statements will usually behave as you expect them to.
There is one operator with lower precedence than the assignment operators –
the comma operator. The comma operator is used to concatenate two or more
expressions together into a single expression, for example:

for (i=0, j=8; i<8; i++, j--)
Example 24: Concatenating expressions with the comma operator

The most common use for the comma operator is inside the initialization or
condition expression of for or while loops.

C allows statements with more than one assignment operation. For example,
you can initialise a number of counter variables with a single statement in C.
The parentheses in the second line show how each operator in the statement
naturally binds.

counterOne = counterTwo = counterThree = 1;
(counterOne = (counterTwo = (counterThree = 1)));
counterOne = (counterTwo = counterThree) = 1;

Example 25: Combining assignment operators in statements

It is possible to enforce a different binding order with assignment operators by
using parentheses. This is shown in the third line where counterTwo is
assigned the value of counterThree because the assignment inside the
parentheses occurs first. Then counterTwo and counterOne are assigned
the value of 1. counterThree is never assigned the value 1 and the original

Operators and Expressions

88

assignment of its value to counterTwo is overridden. The previous value of
counterThree is preserved.

Example 24 and Example 25 show the nature of assignment operators and
the importance of placing parentheses around expressions to establish
precedence. Statements containing multiple assignment operators should be
avoided as they can introduce many debugging difficulties.

8.3 Arithmetic Operators

The arithmetic operators (+, -, *, /, %) perform simple arithmetic on
expressions. The first three arithmetic operators add, subtract and multiply
values.

gamesPlayed = wins + losses;
balance = balance - withdrawal;
area = height * width;

Example 26: Addition, subtraction and multiplication operators

The remaining arithmetic operators warrant a few comments.
numYears = numMonths / 12;
extraMonths = numMonths % 12;

Example 27: Division and modulus operators

The division operator, /, returns the whole quotient. Any fractional portion of
the division is truncated and lost. Remember that truncation is not the same as
rounding. For example, the expression 5/2 returns the value 2, not 2.5 or 3.

Truncation only occurs during integer division. If floating point numbers are
involved in the operation, then the division operator will perform a floating
point divide.

The modulus operator, %, returns the remainder of a division operation. For
example, the expression 5%2 returns the value 1. Thus, if you have calculated a
total number of months, you can easily convert to the number of years and
number of extra months using the following expressions:
years = totalMonths/12;
extraMonths = totalMonths%12;
Example 28: Differentiating the division and modulus operators

Operators and Expressions

89

8.3.1 Increment and Decrement Operators

The increment and decrement operators are unary operators with higher
precedence than the arithmetic operators. The increment operator, ++, adds
one to its binding identifier, while the decrement operator, --, subtracts one.

You can use the increment and decrement operators in two ways: prefix and
postfix. All of the following expressions are valid.
++counter; //prefix increment
counter++; //postfix increment
--counter; //prefix decrement
counter--; //postfix decrement

Example 29: Prefix and postfix notation for increment and decrement

Because the increment and decrement operators modify the value of the
identifier they bind to, they can not be bound to complex expressions. The
following statement is not valid: ++(a + b);.

It is essential to understand how various forms of the increment and decrement
operators return values.

$$$$ Postfix returns a result and then increments or decrements
When you use the postfix versions of the increment and decrement operators,
the computer will return the value of the operator’s binding expression first.
Then it will perform the increment (or decrement). Consider the following
example.

counter=0; //counter set to 0
j=counter++; //j set to 0
i=counter; //i set to 1

counter=10; //counter set to 10
j=counter--; //j set to 10
i=counter; //i set to 9

Example 30: Postfix increment and decrement

The first line of code assigns a value of 0 to the variable counter. The second
line assigns the value of an increment expression to j. Because we used the
postfix increment operator, the expression returns a value of 0 which is the
current value of the counter variable. counter is then incremented by 1.
The postfix decrement operator in the fifth line forces the expression to return
the current value of counter and then decrements counter by one. This

Operators and Expressions

90

sets j to 10 as it is assigned before the decrement takes place and sets i to 9 as
it is assigned after the decrement takes place.

$$$$ Prefix performs an increment or decrement and then returns a
result

When you use prefix increment and decrement operators, the increment or
decrement operation is performed first and then the new value is returned.

counter=0; //counter set to 0
j=++counter; //j set to 1
i=counter; //i set to 1

counter=10; //counter set to 10
j=--counter; //j set to 9
i=counter; //i set to 9

Example 31: Using prefix increment and decrement

With the prefix notation, the second line of code sets j to 1 instead of 0. The
increment operation is performed first, then j is assigned the new value of
counter.

NOTE
If you are using increment and/or decrement operators in a complex expression you
should carefully document their use. Side effects caused by increment and
decrement operators can make reading and debugging code extremely difficult.

8.4 Assignment Operators

The basic assignment operator, =, assigns the value of its right hand expression
to the identifier on its left hand side. C also provides specialised assignment
operators.

Many programs include statements such as total = total +
subTotal;. Programmers constantly perform operations upon a variable’s
value and then reassign a new value to that variable.

This simple type of calculation is so prevalent in programming that the authors
of C decided to provide a class of operators to act as short cuts. You can
combine any arithmetic or bitwise operator with an assignment operator.

Operators and Expressions

91

total += subTotal; //same as total = total + subTotal
cost *= tax; //same as cost = cost * tax

Example 32: Variations on the assignment statement

The assignment operator in the first line of Example 32 takes the value of its
right hand expression, the value of subTotal, and increments its left hand
identifier by that amount. The expression in the second line multiplies the right
hand expression by the left hand identifier’s value, and then reassigns the new
result to the left hand side.

 NOTE
Short cut assignments can be obscure and difficult to follow for anyone else reading
your program code. Make sure to insert comments to explain the use of the
statement.

8.5 Comparison Operators

Most programs depend on the ability to compare values. Are two values equal?
Does a variable have a positive value? Are two expressions true? All these
questions are typically posed in computer programs. C provides three sets of
operators you can use to test and return the truth value of an expression:
equality operators, relational operators and logical operators.

8.5.1 Expressing True and False

Any expression which returns a value of 0 is considered false while an
expression returning any other value is considered true.

C operators which test whether an expression is true or false will return a 1 to
indicate a true result and a 0 to indicate a false result. It is very useful to define
symbolic constants for TRUE and FALSE in order to improve code readability
and portability. These definitions often appear as follows:

#define TRUE 1
#define FALSE 0

Example 33: Defining constant values for true and false

The following is a more useful definition of TRUE and FALSE as it defines
them in terms of what they represent instead of associating them with a value.
For example, TRUE is not defined as 1 but as whatever the compiler uses to
represent the truth of (0==0).

Operators and Expressions

92

#define TRUE (0==0)
#define FALSE (0!=0)

Example 34: Defining constant values for true and false in a portable way

8.5.2 The Equality Operators

The == operator returns 1 if its two binding expressions are identical in value.
In the example: (PortA.1 == 1) assume that PortA.1 represents the
value of bit one in the port defined as PortA. The expression returns 1 if
PortA.1 has the value 1 and 0 if it does not.

NOTE
Do not confuse the == equality operator with the = assignment operator!
PortA.1==1 tests bit 1 of Port A to see if it is set while PortA.1=1 sets bit 1 to 1.

The equality operator is often used as part of a statement which controls the
execution of a loop or a conditional action.

while (PortA.1 == 1) {
 // statements
}
if (counter == 10){
 // statements
}

Example 35: Using the equality operator in control structures

The != operator returns 1 if its binding expressions are not identical in value. In
the following example, the expression returns 1 if bit 0 of PortA is not
cleared.

while (PortA.0 != 0){
 // statements
}

Example 36: The inequality operator

8.5.3 Relational Operators

Relational operators return 1 when they correctly express the relative values of
their binding expressions.

Operators and Expressions

93

The less-than operator, <, returns 1 if the left hand side expression’s value is
less than the right hand side expression’s value. The expression (2<3) returns
TRUE while the expression (3<2) returns 0.

The greater-than operator, >, returns 1 if the left hand side expression is greater
than the right hand side expression. Therefore, the expression (2>3) returns a
value of 0 while the expression (3>2) returns a value of 1.

Both the less-than and greater-than operators have an “or equal to” version.
Both the less-than-or-equal, <=, and greater-than-or-equal, >=, operators
return 1 if their left hand sides are equal to their right hand side. For example,
(3<=3) returns 1 while (3<3) returns 0.

8.5.4 Logical Operators

The unary logical NOT operator, !, returns 1 if its binding expression’s value is
0; otherwise, it returns 0.

The binary logical AND operator, &&, returns 1 if both of its binding
expressions return non-zero values; otherwise, it returns 0. Consider the
following example:

#define size 30
int i=0;
char s[size];
void main() {
 for (i=0;(s[i]!=0)&&(i<size);i++)
 putc(s[i]);
}

Example 37: Logical NOT and AND operators

In Example 37 the conditional statement for the for loop is
(s[i]!=0)&&(i<size). This expression returns 1 if s[i] is not equal to
0 and i is less than size. If either s[i] is equal to 0 or i is greater than or
equal to size then the expression evaluates to 0.
The binary logical OR operator, ||, returns 1 if either one of its binding
expressions returns 1. The logical OR expression is only false when both binding
expressions have zero values. Notice that the logical OR is not exclusive – that
is, if both binding expressions return 1, a logical OR expression will still return
1. Consider the following example.

PortA.0, PortB.0=0;
PortA.1, PortB.1=1;

Operators and Expressions

94

(PortA.0 || PortA.1); // returns 1
(PortB.1 || PortA.1); // returns 1
(PortB.0 || PortA.0); // returns 0

Example 38: Using the or operator

C permits short circuiting of logical expressions
C is able to perform short-circuit evaluations of expressions which use logical
operators. When a program runs the computer will only evaluate as much of a
logical expression as is necessary to determine if the expression has the value 1
or 0.10 For example:

PortA.0, PortB.0=0;
PortA.1, PortB.1=1;
if (PortA.0&&((PortA.1||PortB.0)&&(PortB.1||PortA.1))){
 // statements
}

Example 39: Sort circuit expression evaluation

While the logical expression appears complex, it is actually quite simple. In fact,
a good compiler will flag the entire if structure as unreachable or dead code.
Why? Because of C’s short-circuit evaluation ability. As soon as the computer
begins evaluating the logical expression, it determines that PortA.0 has a 0
value. It knows that this will make the outermost logical AND expression false;
therefore, it does not evaluate the any more of the expression.

Careful design can exploit short-circuit evaluation. For example, you might
want to avoid calling the function to read a key from the keyboard buffer if no
key has been pressed. The following construct shows how you can use short-
circuiting of logical expressions to achieve this:
if ((keyPressed() == TRUE) && ((myKey = getch()) == 0)) {
 // special key has been pressed
 specialKey = TRUE;
 myKey = getch();
}

Example 40: Using short-circuit evaluation

If the keyPressed() function returns 0, a key has not been pressed and the
logical expression will short circuit and avoid the call to getch() – the
compiler knows that if any term in a logical AND expression is false the entire
expression is false.

10 Some compilers allow you to force full evaluation of logical expressions.

Operators and Expressions

95

Notice that the second term in the logical AND expression serves two
purposes. When keyPressed()returns 1 a key has been pressed, the second
term gets a value for myKey and decides whether the pressed key was a special
key (the special character NUL) or not. If getch() returns 0 then we make
another call to getch() to retrieve the identity of the special key.

8.6 Bit Level Operators

Bit level or bitwise operators are operators which evaluate and manipulate data
at the bit level. These operators are especially useful to embedded system
programmers. They fall into two main classes: logical operators and shift
operators.

8.6.1 Bit Logical Operators

C supports one unary and three binary bitwise logical operators. Each of these
operators act only upon values stored in the char, short int, int and
long int data types.

NOTE
Binary logical operators perform data promotion on operands to ensure both are of
equivalent size. If you specify one short operand and one long operand, the
compiler will widen the short to occupy the long 16 bits. This expression will
return its value as a 16 bit integer.

Bitwise AND Operation
The bitwise AND operator, &, produces a bit level logical AND for each pair of
bits in its operands. For example, if both operands have bit 0 set then the result
of the bitwise AND expression has bit 0 set.

int x=5, y=7, z; // 5 is binary 101 and 7 is binary 111
z = x & y; // z gets the value 5 (binary 101)

Example 41: Bitwise AND operation using &

The AND operation is easier to see if your compiler has an extension which
permits data values in binary:

Operators and Expressions

96

int x=0b00000101,
 y=0b00000111,
 z;
z = x & y; // z gets the value 00000101, or 5

Example 42: Using the AND bitwise operator with binary values

The resulting value for z has a bit set in every position where both x and y
have a bit set, and bits cleared in every other position.

NOTE
The bitwise AND, &, is not the same operation as the logical AND, &&.

OR Operations with Bits
The bitwise OR operator, |, performs a bit level logical OR for each pair of
bits in its operands. If either operand has a bit in a specific position set, then
the result of the bitwise OR expression has that bit set. To return to our
previous example:

int x=0b00000101,
 y=0b00000111,
 z;
z = x | y; // z gets the value 00000111, or 7

Example 43: Using the bitwise OR operator |

The value for z has a bit set in every position where either x or y have a bit set,
and bits unset in every other position. This produces a result with all the bits
that either operand has set.

NOTE
The bitwise OR, |, is not the same operation as the logical OR, ||.

XOR Operations with Bits
The bitwise XOR operator, ^, produces a bit level logical exclusive OR for each
pair of bits in the operand. Slightly different than OR, the XOR sets a bit when
one of the operands has a bit set in that position but not if both operands have
the bit set. This produces a result with bits set that the operands do not share:

int x=0b00000101,
 y=0b00000111,
 z;
z = x ^ y; // z gets the value 00000010, or 2

Example 44: The bitwise XOR operator

Operators and Expressions

97

NOT Operations with Bits
The bitwise NOT operator, ~, produces the complement of a binary value.
Each bit that was set in the operand is cleared and each cleared bit is set:

int x=0b00000101,
 z;
z = ~x; // z gets the value 00000101, or 5

Example 45: The bitwise NOT operator

8.6.2 Bit shift operators

Both operands of a bit shift operator must be integer values.

Shift Right
The right shift operator shifts the data right by the specified number of
positions. Bits shifted out the right side disappear. With unsigned integer values
0s are shifted in at the high end as necessary. For signed types the values shifted
in is machine dependant. The binary number is shifted right by number bits:
x >> number;. Right shifting a binary number by n places is the same as an
integer division by 2n.

porta = 0b10000000;
while (porta.7 != 1){
 porta >> 1;
}
while (porta.0 != 1){
 porta << 1;
}

Example 46: Shifting bits left and right

Shift Left
The left shift operator shifts the data right by the specified number of
positions. Bits shifted out the left side disappear and new bits coming in are
zeroes. The binary number is shifted left by number bits: x << number;.
Left shifting a binary number is equivalent to multiplying it by 2n.

99

9. Control Structures
One of the most important features of any programming language is the ability
to control the way in which program statements are executed. Normally, a
computer executes all the statements in your program sequentially. It will start
at the first statement in the main() function and execute each statement and
function call until it finishes executing the last statement in main().

Sometimes you want the computer to deviate from sequential execution.
Control structures allow the making of decisions about which instructions to
execute. You can also use control structures to repeat a set of instructions.

The C language contains a variety of powerful and flexible11 control structures.
In general, control structures fall into two groups – those that branch and those
that loop.

9.1 Conditional Expressions

All C expressions return a numerical value. For example, the expression (2 + 3)
returns the value 5. A control structure tests the value of a particular expression
at run-time and makes a decision about how to proceed.

Consider the expression (2>3). This expression is false as it asserts that 2 is
greater than 3. Since we know that all C expressions return a value we know
that (2>3) must return a value. In C, any expression which evaluates to be
false returns a value of 0 while an expression which evaluates to any other value
returns a value of 1. Thus, we can see that the false expression (2>3) will
return a value of 0.

The representation of true and false is an important concept to keep in mind as
you program in C. Many C programmers use control structures to test
expressions with absolutely no logical operators in them. This may seem foreign
to many programmers familiar with other languages. For example, many C
programmers use a loop construct such as:

11 One problem stems from the overburdening of control structures with statements
which generate side effects.

Control Structures

100

testVariable = 1;
while (testVariable) {
 // some statements
}

Example 47: Controlling loops without using logical operators

As long as the testVariable retains the value of 1 the loop will continue.
At some point a statement inside the loop might set the variable’s value to 0,
causing the loop to terminate before the next cycle.

9.2 Decision Structures

C provides two structures the programmer can use to support different types of
decisions. Decision structures test an expression to determine which statement
or statement block to execute.

9.2.1 if and else Statements

if
The if structure specifies a specific execution path based on the value of a
particular expression. The following example shows the general form for this
structure:
if (expression) {
 // if expression is true do these statements
}

Example 48: if and else structure

Notice that the if statement is not followed by a semicolon. This is because an
if statement is not a complete statement by itself. The if structure requires a
statement or statement block to complement it. The complementing statement
or statement block provides the terminating semicolon. All the following
examples are syntactically correct:
if (a) b=c;
if (a)
 b=c;
if (a){
 b=c;
 d=e;
}

Example 49: Using the if statement structure

Control Structures

101

When the expression evaluates to 1, the if structure’s complementing
statement or statement block is executed. If the expression evaluates to 0, the
complementing statement or statement block is ignored and the statement
directly after the if structure is executed.

else
There is an additional optional component of the if structure which executes a
set of statements when the if tested expression is false. This additional
component is the else structure.

The else structure must be the first statement following an if structure.
When the if condition evaluates to 0, execution will pass directly to the else
structure.
if (expression) {
 // if expression is true execute these statements
}
else {
 // if expression is false execute these statements
}

Example 50: The else statement

Like the if, else needs a complementing statement or statement block which
provides its semicolon terminator. Unlike the if, else does not test the value
of an expression.

9.2.2 Nested if statements

It is possible to place one if structure inside another if structure. Consider
the following example.

if (PortA_DDR.0 != 1) {
 if (PortA_DDR.1 != 1) {
 PortA.0 = 1;

 PortA.1 = 1;
}

}
Example 51: Nesting if statements

If the value of PortA_DDR bit 0 it not 1 and the value of PortA_DDR bit 1
is not 1 then PortA bit 0 and PortA bit 1 are set to 1. You could encapsulate
the example into a single logical expression such as:

Control Structures

102

if ((PortA_DDR.0 != 1) && (PortA_DDR.1 != 1))
Example 52: Converting nested if statements to logical expressions

9.2.3 Matching else and if

An else always matches with the nearest unmatched if. A common problem
with if..else structures arises from a set of statements such as:
if (a)
 b=1;
 if (!a)
 b=2;
else
 b=3;

Example 53: Matching if and else statements

If a has the value 1, what value will b have after these statements? What if a
has the value of 0? Will b ever have the value of 1 after these statements? The
answer to all these questions depends entirely upon a syntactic question – which
if statement does the else belong to? In C an else structure always
belongs to the nearest if not already associated with an else.

Using this rule, we can see that the else associates with the second if, not
the first. Therefore, if a has the value 1, b is first given the value 1 by the
statement if (a) b=1; . When the next if statement is evaluated b is given
the value 3 because the conditional statement is !a which evaluates to !1 or 0.
The else statement is executed and b is assigned the value 3.

Good programmers include braces around the complementing statements of
if and else structures in order to make code easier to read, debug and
modify. Applying this principal to the previous example makes the situation
much more obvious.

if (a) {
 b= 1;
 if (!a) {
 b=2;
 }
 else {
 b=3;
 }
}

Example 54: Using braces to clarify the combination of if and else

Some programmers like to make the situation clearer by placing an else on
the same line as the end bracket of its matching if:

Control Structures

103

 if (!a) {
 b=2;
 } else {
 b=3;
 }

Example 55: An alternate format for showing if else pairing

9.2.4 switch and case

if..else structures let you make a decision between two paths based on the
truth value of a single expression. You can use a series of nested if statements
to test a variable for a series of possible values, but C includes a statement
which tests many possible variable values: the switch-case structure. This
structure lets you switch between several different possible paths of code to
execute.

The switch-case structure has a switch value or expression upon which
the branching of code execution is based. Statement execution depends upon
the different cases provided for possible values of the switch. The general
format for the switch-case structure looks like:
switch (expression) {
 case possibleValue :
 statement;
 statement;
 break;
 case anotherPossibleValue :
 statement;
 break;
}

Example 56: The switch..case structure

Like the if statement, switch is not a statement on its own – it requires a
complementing statement block. Unlike the if structure, the switch
statement complementing statement block must have a specific form,
consisting of a series of possible cases for the switch expression.

9.2.5 Execution within a switch

Each value for the switch expression is preceded by the keyword case, and
followed by a colon. When the switch is executed each case is tested in
turn. If a case value does not match the evaluated value of the switch
expression, all code is ignored until the next case statement is encountered or
the end of the switch block is reached. If a case value matches the

Control Structures

104

switch value, execution begins with the statement following the matching
case.

9.2.6 Fall-through execution

Once a case value matches the switch expression every subsequent line is
executed, including those after subsequent case statements. Most of the time
this is not the desired action; you want the computer to execute the code for
only one case. To avoid the “fall through” effect of the C switch-case
structure, you must place a break statement at the end of each case.

Sometimes you may wish to take advantage of the “fall through effect”.
Consider the following simple example which enables a decimal point if specific
digits are being displayed:

switch (digit) {
 case 1:
 addpt = 0;
 case 2:
 case 4:
 addpt = 0x80;
 break;
 case 5:
 addpr = 0;
 break;
}

Example 57: Using the fall-through effect with switch statements

Notice that if the second or fourth digit is being displayed addpt is set to
0x80. This variable addpt is a flag which allows the display of a decimal
point which delineates between minutes, seconds and fractions of a second.
The “fall-through” effect is used with case 2: where it falls through to case
4:. If the first or fifth digit is being displayed addpt is set to 0 indicating that
no decimal point is displayed.

NOTE
Notice that there is a break statement after the 5 case value, even though this is
not compulsory. It is good programming practice which helps in the event that you
modify the structure by adding additional cases. The existing break can help
prevent debugging problems.

The multiple case enhancement available with some C compilers allows a
clearer form of this example:

Control Structures

105

switch (digit) {
 case 1, 5:
 addpt=0;
 break;
 case 2, 4:
 addpt = 0x80;
 break;
}

Example 58: Multiple case enhancement

9.2.7 The default case

Another useful feature of the switch-case structure is the option to provide
a default case value. A default case is automatically considered a match
with the switch expression value regardless of what that value actually is.
This means that the default case should always be placed last in a
switch-case structure, otherwise it will match before the switch
expression can be tested against any other possible values. The following
example shows the use of the default case value.

switch (digit) {
 case 2:
 case 4:
 addpt = 0x80;
 break;
 default :
 addpt = 0;
}

Example 59: Using the default case value

9.2.8 The goto Statement

Many C programmers have strong objections to the use of the goto statement.
The goto remains a holdover from early programming languages without
sophisticated control flow. Because C provides a variety of useful control
structures, you should not need to use goto statements.

If you do use a goto statement, be extremely careful and document it well.
Consider the following example:
void main(void){
 if (time < limit)
 time++;

Control Structures

106

 else
goto Done;

Done:
}

Example 60: The goto statement

NOTE
Make sure that when you use a goto statement you document where the target is.
This can help prevent later debugging problems. As a general rule, you should write
code which uses some control flow method other than a goto.

9.2.9 Comparing goto and switch..case

You may have noticed a similarity between the goto statement and the
switch..case statement. This similarity in form comes with a similarity in
function. The switch-case behaves like a goto or jump table where each
case is a label.

NOTE
It is essential to remember that the switch-case operates like a jump table. The
fall-through effect of case statements can be useful, but a source of debugging
problems if break statements are not used properly.

9.3 Looping Structures

C control structures allow you to make a decision on the path of code
execution. C also provides looping structures for control over program flow.
Loop control structures allow you to repeat a set of statements.

9.3.1 Control expression

The key component of any loop structure is the control expression. At some
point in each iteration, the control expression is tested. If the control
expression evaluates to 0 program execution passes to the first statement
following the loop structure. If the expression evaluates to 1, execution
continues within the loop structure statement block.

Control Structures

107

NOTE
The only control you have over loop structures is the control expression. The
compiler cannot tell you if a loop has a control expression which will never evaluate
to 0. In embedded systems programming, infinite loops are often used to keep the
program running constantly.

9.3.2 The while loop

The simplest C loop structure is the while loop. Here is the general form of
the while loop:

while (controlExpression) {
 // statement block
}

Example 61: The while loop syntax

In a while loop the control expression is at the top of the structure. The
while loop evaluates the control expression before every loop iteration –
including the first loop iteration. Therefore, if a control expression evaluates to
0 the first time the while loop is encountered, the statements inside the
structure will never execute.

9.3.3 The do loop

The do loop tests the control expression value after every loop iteration. The
general form of a do loop is as follows:
do {
 // statement block
} while (controlExpression); // close do

Example 62: The do loop syntax

Because the do loop tests the control expression after every iteration of the loop
the statement block will always execute at least once, even if the control
expression evaluates to 0 when the loop is first entered.

NOTE
The do loop is one of the few cases where keywords belong at the end of a
statement block. Because of this, you should place the while expression on the
same line as the loop’s closing brace and put a comment after the while explaining
that it closes a do structure.

Control Structures

108

9.3.4 The for loop

The most complex and flexible looping structure available in C is the for loop.
The for loop incorporates statements which alter variables used in the control
expression. The example on the left shows a while loop and that on the right
shows the equivalent for loop:

while loop for loop
counter=0;
while (counter<=10){
 //statements
 counter ++;
}

for
(counter=0;counter<=10;counter++){
 //statements
}

Example 63: Comparing the while and for loops

A for loop executes statements a predetermined number of times. The control
expression for the loop is initialized, tested and manipulated entirely within the
for loop parentheses. It is easy to debug the looping behaviour of the
structure as it is independent of the activity inside the loop.

9.3.5 How the for loop works

Each for loop has up to three expressions which determine its operation. The
following example shows general for loop syntax. Notice that the three
expressions in the for loop argument parentheses are separated with
semicolons.
for (initialize; control; increment) {
 // statement block
}

Example 64: Using the for loop

The first expression, initialize;, provides initial values for variables used
in the control expression. When the for loop is first encountered this
initialization expression is executed.

The second expression, control;, is the same as the control expression used
in the while and do loops. Like the while loop, the for loop control
expression is checked before each loop iteration. If the control expression
evaluates to 1, the loop statement block is executed; otherwise, execution passes
to the first statement following the loop. In Example 63, the control
expression tests to see if counter is less than or equal to 10. As long as the
expression returns 1, the loop will iterate.

Control Structures

109

The third increment expression, increment, is used to modify value(s) in the
control expression. The increment expression is executed after each loop
iteration. Execution then jumps to the beginning of the loop and the control
expression is tested.

NOTE
You can omit any of the for loop expressions, but you must include the semicolon
separators so the compiler knows which expressions have been left out. If the
control expression is omitted the for loop will not stop.

9.4 Exiting a Loop

C provides two ways to escape a looping structure: the break and
continue statements. When either of these statements is encountered inside
a loop any remaining statements inside the loop are ignored.

9.4.1 The break Statement

Use a break statement to completely break out of a loop. The most common
place for a break statement is inside a switch-case structure. However,
this is not the only place it can be used. You can also use a break statement to
break out of any looping structure in C. When a break is encountered
inside a looping structure, the loop terminates immediately and execution
passes to the statement following the loop.

9.4.2 The continue Statement

You may wish to jump to the next iteration of a loop without breaking out of
the loop entirely. A continue statement will allow you to do this. When a
continue statement is encountered inside a looping structure, execution
passes immediately to the end of the loop statement block. Because execution
passes to the end of the loop statement block, the next action is the evaluation
of the loop control expression.

If continue is used with a while or for loop, execution jumps from the
end of the statement block to the control expression at the top of the loop. If
used with a do loop, execution passes from the end of the statement block to
the control expression at the bottom of the loop. In all cases, the effect is the

Control Structures

110

same – a continue statement does not circumvent the loop control
expression, it ignores any statements remaining in the loop iteration.

111

10. Functions
Functions are the basic building blocks for all C programs.

There are some restrictions for the creation of C functions. Each function in a
C program must be self-contained. You may not define a function within
another function. Also, you may not extend the definition for a function across
more than one file – when you define a function it must be contained within a
single file.

10.1 main()

Every C program has at least one function called main(). When the target
computer runs your program, program execution generally begins with the first
statement of the main() function.

In reality, program execution usually begins with initialization code quietly
linked into the program. The C compiler may generate this automatically, based
on information contained within the C program, or it may link in a standard
library. But the compiler cannot know the entire state of a target embedded
system before invoking main(). In a desktop system, the OS itself covers
most of the hardware details. In an embedded system without an OS, you may
be obliged to write intialization code to establish the running state of the MCU
before transferring control to main().

There it little to stop you from performing such initialization within main()
itself.

10.2 Executing a Function

Any function in a C program can execute, or call, any other function. Typically,
the main() function calls one or more other functions which may in turn call
other functions. There is a restriction on the calling of functions: a function
cannot call a function which it does not recognize. There are two different
techniques for allowing a function to be recognised.

Functions

112

!!!! Provide the full definition for a function before the part of the program which
calls it. This method has the following complications:

1) C lets you combine functions from several files into a single program –
 how would you alert your program to functions found in another file?

2) It is possible to have two functions call each other – which of these
functions would you define first?

"""" Use a function prototype to alert the compiler about a function before you actually
provide its definition. This method has several advantages which are explained
in the following section.

10.2.1 Calling a Function

The syntax for a function call in C is the function name and a list of parameters
surrounded by parentheses. When the C compiler encounters an identifier
followed by a left parenthesis it knows that the identifier represents a function.
For this reason, function names always include a pair of parentheses, for
example main().

If you have defined a function called sum() to add two integers and return the
result you can assign the return value of sum() to a variable with the following
line:

sumResult = sum(firstNum, secondNum);

Notice that the function call to sum() fits into an assignment expression in
the same way as a variable or variable expression. You can place a call to a
function any place an expression can occur. For example:

areaRectangle = height * sum(length, width);

You can include expressions in the parameter list in place of variable names as
long as the expressions evaluate to an appropriate data type. For example, a
formula to calculate the hypotenuse of a right-angled triangle could look like
this:

hypotenuse = sum((sideOne*sideOne), (sideTwo*sideTwo));

Notice that there are parentheses around each expression in the parameter list.
This is for the sake of clarity but the is not required because of the extremely
low precedence of the comma operator which separates elements in the
parameter list.

Functions

113

10.3 Function Prototype Declarations

Function prototype declarations ensure that your program knows about a
function. Like variable declarations, function prototype declarations let the
compiler know about the function names before the function is used. You may
not include a function prototype inside the definition of a function.

10.3.1 Defining the Function Interface

Function prototypes allow you to fully define the interface to a function
without worrying about its contents. This concept is referred to as data
abstraction. A function interface contains:

1) Data type returned by the function
2) Function name
3) Data types of function parameters

Once a function prototype defines an interface, the compiler can check calls to
the function. Do the calls use the right number and type of parameters? Does
your program treat the functions return value appropriately for its type?

10.3.2 Calling Functions in Other Files

Function prototypes let you take advantage of functions in other files, even if
the files have already been compiled. Pre-compiled files of functions are called
object libraries and most C development environments make extensive use of
them. The prototypes for functions in a pre-compiled library are often
contained in a header file. This allows you to take advantage of pre-compiled
functions without having to worry about compiling or maintaining them.

For example, traditional C development environments provide standard library
functions to handle user input and output. A header file called stdio.h
contains the prototypes for these functions. Since very few 8 bit platforms
provide resources for user input and output, these library functions are not
typically needed. 8 bit microcontroller libraries are often for such things as
A/D, serial and peripheral support. For example, the library lcd8.h contains
functions which write data to the LCD, control the LCD and initialize the
LCD. If you use any functions from the LCD library, you must include the
appropriate header file in your program:

Functions

114

#include <lcd8.h>

The angle brackets in the #include directive instruct the preprocessor to
search for the header file in the location reserved for library header files. The
directory or path searched is dependent on the compiler and operating system.

10.3.3 Function Type, Name and Parameter List

There are similarities between a function prototype and a variable declaration.
Consider the following example.

int counter; //variable declaration
int sum(int numOne, int numTwo); // function prototype

Example 65: Comparing function and variable declarations

The first element in the function prototype is a data type. This tells the
compiler the data type of the function’s return value. The type of the return
value informs the compiler how much memory to allocate in RAM to hold that
value. It also ensures that you use the function properly in expressions
elsewhere in the program. In this case, you can put a call to sum() in any
expression where an int value could occur.

After the function data type comes the name of the function. This identifier is
entered in the symbol table and associated with an address which contains the
beginning of the function’s executable code. When your program calls a
function, execution jumps to the address associated with the function name.

Parentheses following an identifier inform the compiler that you are declaring a
function, not a variable. You must include the parentheses, even if a function
accepts no parameters. If there are function parameters each one should include
a data type and a meaningful name. It is only necessary to include the data type
of each parameter in a function prototype declaration. For example:

int sum(int, int);

However, this form is unclear. Including meaningful names for each parameter
increases program readability. It also helps to understand the order in which a
function reads parameters. For example, suppose you encounter the function
prototype:

int portControl(int, int);

This prototype is ambiguous – presumably each parameter holds an integer
value, but these could be used in very different ways. For example, suppose this
function controls a port – the first parameter could specify the port address and

Functions

115

the second parameter the data direction values. A prototype like the following is
much clearer:

int portControl(int portLoc, int DDR);

Function prototype names need not be those used in the function definition,
but using the same names helps to avoid confusion.

10.3.4 Functions and void

Some functions accept no parameters or return no value12. For example, you
could create a function prototype such as:

wait();

When most compilers encounter such a declaration, they assume that the
function will return an int value. In embedded systems this practice wastes
memory resources because the space for the int is reserved.. To avoid this
problem use the void keyword:

void wait();

The void keyword tells the compiler explicitly that the function will not return
a value so no memory is allocated for a return value. You can also use void
inside the parentheses of a function prototype to explicitly declare that the
function accepts no parameters:

void wait(void);

Notice that void applies to function definitions as well as the declaration of
function prototypes. You will see programs that begin like this:

int main(void)

It is best to include the void keyword whenever you have a function without a
return value or parameters. This clarifies the purpose of your functions.

12 Some C programmers insist that functions which just produce side effects should
return a value to indicate success, failure or error. Since memory is at a premium in 8
bit development, embedded developers see this practice as a luxury.

Functions

116

10.4 Function Definitions

A function prototype describes the interface to a function while a function
definition describes the function interface and contents. The definition includes
the statements that will execute the function is called. When the compiler
reaches the function definition, it reserves enough program memory to hold the
statements in the function and stores the address of the first statement with the
function name.

10.4.1 Statement Block

A function definition includes a statement block which contains all function
statements. A statement block is a group of one or more statements enclosed in
braces {}. Even if a function has only a single executable statement it must be
enclosed in a statement block. For example, consider the following simple
function which returns the sum of two integers passed as parameters:
int sumInt(int firstNumber, secondNumber) {
 return(firstNumber + secondNumber);
}

Example 66: The function statement block

10.4.2 Variable Declarations in Function Definitions

A function statement block can contain any number of variable declarations13.
You may declare a variable anywhere in your function, as long as it is declared
before it is used. Code is generally more readable if you declare variables at the
top of the function block:
int sumInt(int firstNumber, secondNumber) {
 int sumTotal; // local variable holds sum
 sumTotal = firstNumber + secondNumber;
 return(sumTotal);
}

Example 67: Variable declarations inside functions

13 Any statement block can include new variable declarations.

Functions

117

10.5 Function Parameters

Most functions required information from the code that calls them. The most
common way to pass information to a function is through its list of parameters.
You can also pass information to a function using of global variables – any
variable in global program space can be used by any program function. It is
good programming practice to avoid the use of global variables if possible.

10.5.1 Passing Data by Value

When you call a function, parameter values are passed to the function. The
compiler will set aside the appropriate amount of memory to hold these values.
This is why it is important to specify function parameter data types in the
function prototype. The following code clarifies this.

void change(int num) {
 num = 4;
}
void main(void) {
 int val = 2;
 change(val); //send value of val to change()
 val += val; // val = 2 + 2 = 4
}

Example 68: Passing data to a function by value

What value will val have after last line in main()? The answer is 4, not 8.
When main() calls change(), the value of val is passed to the function,
not its address. The function stores the value in the memory location reserved
for its parameter, num. The value at this memory location is changed by the
function. change() but the change has no effect on the value stored in val
because val’s address is not known. This method of parameter handling is
called passing parameters by value.

10.5.2 Passing Data by Reference

How can you write a function which can change variables belonging to its
calling function? A variable value can be changed by accessing the variable’s
address to change its value. Variables are accessed by their addresses using
pointers. A pointer is a data type which stores an address. A pointer can be
used like any other data type, therefore you can write a function which accepts a
pointer as a parameter. The following is another version of the example from
the previous section.

Functions

118

void change(int *num) { //pointer to an int value
 *num = 4; // place 4 at address in *num
}
void main(void) {
 int val = 2;

 change(&val); //pass the address of val
 val += val;
}

Example 69: Passing a variable to a function by address (reference)

In this example, val will have a value of 8 after the last line in main().

The definition of change() includes a pointer to an integer parameter,
instead of the integer parameter itself. When main() calls change the
function creates a copy of val’s address in memory, not its value. The
assignment performed by the function uses the dereference operator, *. Instead
of assigning the value 4 to num, the dereference operator assigns 4 to the
memory location corresponding to val’s address which is stored in the pointer
num. The dereference operator reads the value of its binding identifier as an
address and then represents the value stored at that address.

NOTE
Notice that in the call to change() you specify the address of val with the unary
address operator &. The address operator returns the address in memory which
stores the value of its binding identifier.

10.5.3 Functions Without Parameters

Most programs have at least one function which accepts no parameters –
 typically main(). A function with no parameters can be declared it with an
empty parameter list.

int myFunc()

However, it is good practice to specify that the function has no parameters with
the void parameter type:

int myFunc(void)

Functions with no parameters create side effects. A program expects calls to
functions to return values. Anything a function might do besides return a value
is considered a side effect. Side effects can be important and quite useful;

Functions

119

however, you should be careful when including many functions which produce
side effects.

Functions which produce extensive side effects are harder to maintain and
debug, especially for members of a development team. To safely use abstract
functions, you only need to know the data which goes in and comes out – the
function interface. When a function produces side effects, you need to know
about the interface and behaviour to use it safely.

121

11. Complex Data Types
This section introduces several complex C data types. Complex data types
include pointer, arrays, enumerated types, unions, and structures. A solid
understanding of pointers and arrays in particular is absolutely vital to an
effective use of the C language.

11.1 Pointers

The elementary C data types, char, int and float, store values which are
used directly. Unlike these basic types, the pointer data type represents values
used indirectly.

All data stored in computer memory is stored as a series of ones and zeroes. C
data types act as filters which interpret these ones and zeroes. When the
computer evaluates a pointer value, it reads the ones and zeroes as a memory
address. Consider computer memory a single long street and each block of
memory as a building, then a pointer contains a number which identifies a
specific building on the street.

A pointer value can be interpreted as a number just as a real address could.
Because of the pointer’s special nature, the computer knows to interpret that
number as an address in memory.

NOTE
Pointers can be difficult to understand. A pointer contains a numeric value, the
difference is in the way the value is interpreted: as an address in memory.

11.1.1 Declaring a Pointer

The declaration of a pointer data type must specify the type of data it can point
to. Consider the following statement which declares a pointer able to point at
any data of type int: int * myIntPtr;

When you declare a pointer, the compiler assigns it the value NULL – this
signifies that it points to no valid address.

A pointer’s data type is important. The computer uses the data type to
determine the size of the memory block the pointer points to. For example, on

Complex Data Types

122

8 bit microcontrollers an int takes up memory in 8 bit blocks. Therefore,
myIntPtr from the previous example points to a block of memory 8 bits in
size.

11.1.2 Pointer Operators

To help manipulate pointers, C provides two, unary operators: the address-of ,
&, operator and the dereference , *, operator. The dereference operator is used
with any pointer and the address operator with any type of data.

The Address Operator
The address operator, &, is a prefix unary operator. It binds with the identifier
to its immediate right and returns the memory address of its bound identifier.
Typically, the address operator is used to assign the address of a variable to a
pointer or to pass the address of a variable to a function. Consider the
following code example.

int * myIntPtr; // myIntPtr is a pointer to an integer
int ** myPtrPtr; // myPtrPtr is a pointer to a pointer
int myInt = 2;
// assign address of myInt to myIntPtr
myIntPtr = &myInt;
// assigns address of myIntPtr to myPtrPtr
myPtrPtr = &myIntPtr;

Example 70: Using the address of operator

Memory Space Address Type Name Type Value
00000010 0x00 int myInt The integer 2

00000000 0x01 pointer to int myIntPtr The address 0x00

00000001 0x02 pointer to
pointer

myPtrPtr The address 0x01

Table 9: Pointers and pointers-to-pointers

It is possible to use the address operator with a pointer. In these cases, the
address operator returns the memory address where the pointer’s value is
stored. This double indirection is described as a pointer to a pointer which is
also called a handle.

Complex Data Types

123

The Dereference Operator
The dereference operator, *, is a prefix unary operator. It interprets the value
of its bound identifier as a memory address and returns the value stored at that
location. For example, all of the following equality expressions evaluate to 1:

myIntPtr = &myInt; //point to myInt

*myIntPtr == myInt; //dereferenced pointer = integer value
(*myIntPtr += 1) == (myInt += 1);
(*myIntPtr)++ == myInt++;

Example 71: Using the pointer dereference operator

Why do these last two logical expressions use parentheses? Because of C’s
precedence rules.

In the first case the == equality operator has a higher precedence than the +=
assignment operator, so the parentheses ensure that both assignments are
performed before the equality evaluation.

In the second case the postfix ++ increment operator has a higher precedence
than the * dereference operator. To perform the dereference first, we need to
place parentheses around its sub-expression. Without these parentheses, the
increment operator would increment the pointer instead of the what the pointer
points at! The results of this side effect are not obvious until the next time you
use myIntPtr.

NOTE
It is essential to remember that * and & are operators and that careless use of them
can create bugs which are difficult to locate. Always include parentheses and
comments to facilitate debugging pointer problems.

11.1.3 Pointer Pitfalls

Dereferencing a pointer set to NULL will cause problems. Pointers pointing to
NULL do not point at a valid memory address and cannot be dereferenced. The
following code fragment shows a common mistake made with pointers:
int * myIntPtr;
int myInt;

*myIntPtr = myInt // dereference a NULL pointer!

Example 72: Dereferencing a pointer set to NULL

Complex Data Types

124

Remember that assignment operators have lower precedence than the
dereference operator. The assignment will not happen until you attempt to
dereference the NULL pointer! Before you dereference a pointer, it must have a
valid address value. The following fragment shows the proper way to initialize a
pointer.

int * myIntPtr;
int myInt;

myIntPtr = &myInt; // correct way to initialise a pointer

Example 73: Initializing a pointer

The address operator has a higher precedence than the assignment operator.
The address of myInt is returned before the assignment to myIntPtr.
Notice that we do not need to initialize myInt in order to point myIntPtr
at it. The declaration of myInt sets aside a specific memory block for myInt.

11.2 Arrays

It is useful to arrange related elements of data in blocks or structures. The
fundamental block arrangement is the array14. When you declare an array, you
must declare both an array type and the number of elements it contains. For
example, the following declares an array containing 8 int elements:

int myIntArray[8];

When you declare an array a single, contiguous block of memory is reserved to
hold it. This is why you must specify the array size. As soon as an array is
declared a block of memory large enough to hold all the array elements is
allocated.

11.2.1 Accessing Array Elements

The postfix subscript operator, [], is used to refer to an array element. The
operator binds to an identifier which returns an address in memory. The integer
expression inside the square brackets is evaluated and this number determines
how many units of memory should be moved past the bound identifier address
value.

14 Another way to arrange related elements of data is with the struct data type.

Complex Data Types

125

How big is a unit? The size is determined from the data type of the bound
identifier expression. For example, if myIntArray is an array of int then
the expression myIntArray returns the starting address of the block of
memory occupied by the array. The expression myIntArray[2] jumps two
int sized blocks from the address returned by myIntArray.

NOTE
When you declare an array in C you must specify the number of elements it
contains. However, when you subscript an array the number in the brackets
indicates the number of elements past the first element in the array. The first
element in a C array is number 0. This is because the notation myArray[0] is
interpreted as a jump 0 elements past the first element in the myArray memory
block.

11.2.2 Multidimensional Arrays

A multidimensional array is declared with an array subscript for each
dimension. For example a two dimensional array is declared as: dataType
arrayName[dim1][dim2];

11.2.3 Array Operations and Pointer Arithmetic

Two operations specifically take an array as their argument:

1) Deriving the total array size with the sizeof() operator
2) Deriving the address of the first array element

All access to array data is handled using pointer arithmetic. Consider the
following code:

int myIntArray[8];
int * myIntPtr;
myIntArray[0] = 5; //first element of array set to 5
myIntArray[1] = 10; //second element of array set to 10

// set myIntPtr to point to first element in myIntArray
myIntPtr = &myIntArray[0];
myIntPtr = myIntArray; //same effect as preceding line
// this equivalency expression is true
*(myIntPtr + 1) == myIntArray[1];

Example 74: Array operations and pointer arithmetic

Complex Data Types

126

First we declare an array of int values and a pointer to an int. We then set
the pointer, myIntPtr, to point to the first element of the array. Notice how
to set a pointer to point at an array. You can use the expression
myIntPtr = myIntArray; because myIntArray returns the address
of the first array element.

The tricky part of Example 74 is the last statement. Pointer arithmetic allows
us to specify the int sized block of memory next to myIntPtr with the
expression myIntPtr + 1. Since we know that arrays are always stored in
contiguous blocks of memory, it follows that the int sized block of memory
next to myIntArray[0] must be myIntArray[1].

In general, the expressions *(myIntPtr + x) and myIntArray[x] are
equivalent when myIntPtr points to the first member of myIntArray[].
Because the subscript square brackets are an operator, the expressions
myIntPtr[x] and myIntArray[x] are also equivalent. The subscript
operator checks the underlying type of myIntPtr and, finding that it points
to an int, jumps over x int sized blocks.

Be careful! The apparent symmetry between pointers and arrays emerges from
the way their related operators work. Arrays and pointers are not fundamentally
the same. The first two equivalency expressions return 1, but the third may
return either 1 or 0:

*(myIntPtr + x) == myIntArray[x];
myIntPtr[x] == myIntArray[x];
// this may not be true
*(myIntPtr + x) == (myIntArray + x);

Example 75: The relationship between arrays and pointers

Even though the expression myIntArray returns an address value it is not a
pointer. Since myIntArray is not a pointer, pointer arithmetic will not always
work as expected15.

11.2.4 Arrays of Pointers

An array can contain pointers to other data types. The most common use for an
array of pointers is to use an array of pointers to type char which are pointed to
strings. This technique can be used to send messages to a screen. In the

15 For a useful treatment of array-pointer distinctions see Koenig’s C Traps and Pitfalls.

Complex Data Types

127

following example the array is declared in main but the array is passed to a
function where the values of the pointers are assigned.

void func1(char *p){
 p[0]="Press 1 to start";
 p[1]="Press 2 to continue";
 p[2]="Press 3 to RESET";
 p[3]="Press 4 to quit";
}
void main(void){
 int val;
 char *message[10];
 if (val==TRUE){
 func1(message);
 }
 else
 message[0]="Status is OK";
}

Example 76: Declaring and initializing an array of pointers

11.3 User Defined Data Types

The most flexible complex data types are those you define yourself. C allows
you to construct new data types in terms of those already defined.

11.3.1 Using typedef to Define New Data Types

The typedef keyword is used to define new data types. You must include an
underlying type for your new type and the name of your new type.

For example, you can create a new type called BYTE using unsigned short
int as the underlying type:
typedef unsigned int UBYTE;
typedef unsigned long UWORD;
UBYTE Var1; // new variable of type UBYTE
UWORD Var2; // new variable of type UWORD

Example 77: Using typedef to define a new data type

With typedef, the name of the new type is in the same location as the
variable name in a simple variable declaration. For example, what new types are
created with the following declaration?

struct coord_tag {
 int xVal;
 int yVal;

Complex Data Types

128

};
typedef struct coord_tag COORD;

typedef struct location_tag {
 int xLoc;
 int yLoc;
}LOC;

COORD first, last;
LOC pt1, pt2;

Example 78: Defining a new enumerated type

COORD and LOC are the new types. In this case, coord_tag and
location_tag are the tags for the new structures. Tags are discussed in
the next section. Example 78 shows two different techniques for using
typedef with struct.

11.3.2 Using types defined with typedef

Once you have defined a new type using typedef, it can be used like any C
data type.

"# You can use sizeof() to retrieve memory size requirements:
byteSize = sizeof(UBYTE);
structureSize = sizeof(COORD);

"# You can cast the results of expressions:
// get next char from buffer, store number value in myByte
myByte = (UBYTE)getNextChar();

11.4 Enumerated Types

The most straightforward complex data type is the enumerated data type,
declared as type enum. The enum type is used to represent a set of possible
values. The traditional example for this type is the days of the week:
enum WEEK { Su, Mo, Tu, We, Th, Fr, Sa } dayOfWeek;

This declaration creates an enumerated type called WEEK, provides seven
possible values, and declares a variable called dayOfWeek of this new
enumerated type. You can also separate this process into two declarations:

enum WEEK { Mo, Tu, We, Th, Fr, Sa, Su };
enum WEEK dayOfWeek;

Complex Data Types

129

The label WEEK is not a new type, it is called a tag. The second line of code in
the previous example requires the enum keyword for the declaration of
dayOfWeek. To use WEEK as a user defined data type you require a
declaration such as:

typedef enum { Mo, Tu, We, Th, Fr, Sa, Su } WEEK;
You can declare the enumerated variable dayOfWeek on a single line. Since
the enumerated list tag WEEK represents the list itself we do not need to include
it in the declaration.
enum { Su, Mo, Tu, We, Th, Fr, Sa } dayOfWeek;

The tag is useful as it can represent a list of enumerated elements to declare
more than one variable of that type.

enum WEEK { Su, Mo, Tu, We, Th, Fr, Sa } dayOfWeek;
enum WEEK dayOFWeek;
enum WEEK payDay = Th;
enum WEEK groceryDay = Sa;

Example 79: Declaring multiple variables of the same enumerated type

11.4.1 Enumerated Type Elements

Enumerated type elements are interpreted as integer constants. By default the
first element in an enumerated list is given the integer value 0, the second
element is given 1 and so on. This allows for the manipulation of values in an
enumerated list as numbers:

dayOfWeek = Mo;
dayOfWeek += 1; // dayOfWeek now has the value Tu

Example 80: Enumerated types as integer values

You can also test the elements of an enumerated type:
while (dayOfWeek < Sa) {
 weekDay = TRUE;
 getNextDay(dayOfWeek);
}

Example 81: Testing the value of an enumerated type

11.4.2 Enumerated Type Value Checks

A drawback of enumerated type variables in C is the lack of boundary checking.
You can legally use the expression dayOfWeek = Fr+3. Since the Fr
element has the value 4, dayOfWeek is assigned the value 7. However, there is

Complex Data Types

130

no element representing member 7 of the enumerated type WEEK. These errors
are often not detectable at compile time.

NOTE
Ensure that enumerated variables have the values you expect them to have by
performing your own boundary checking.

11.4.3 Specifying Values for Enumerated Elements

By default, the compiler supplies a range of integer values beginning with 0 for
any list of enumerated elements. This default behaviour can be modified in two
ways:

1) Specify values for each enumerated element. The following example is from
the COP8SAA7 WATCHDOG service register WDSVR. Bits 6 and 7 of
this register select an upper limit to the service window which selects
WATCHDOG service time.

enum WDWinSel { Bit7 = 7,
 Bit6 = 6};

Example 82: Specifying integer values for enumerated elements

2) Specify a starting value for the enumerated elements. By default, the
compiler assigns the value 0 to the first element in the list. You can set the
list to begin with another value.

enum ORDINALS {first = 1, second, third, fourth, fifth};
Example 83: Specifying a starting value for enumerated elements

When the compiler encounters an element in an enumerated list without an
assigned value it counts from the last value that was specified. For example, the
following enumerated list specifies the appropriate values for its elements.

enum ORDINALS {first=1, second, fifth=5, sixth, seventh};
Example 84: The assignment of integer values to an enumerated list

NOTE
Since character constants are stored as integer values they can be specified as
values in an enumerated list. enum DIGITS {one=‘1’, two=‘2’,
three=‘3’}; will store the appropriate integer values of machine character set
(usually ASCII) for each digit specified in the element list.

Complex Data Types

131

11.5 Structures

Structures support the meaningful grouping of program data. Building the
appropriate data structures is one key to the effectiveness of a new program.

The following declaration creates a structured type for the number shown by an
LED display and describes each element within the structure. The display is
defined as having the components DisplaySelected, hundreds, tens
and ones.
struct Display_tag {
 int DisplaySelected;

int hundreds;
int tens;
int ones;
char AorP;

};
Example 85: Declaring the template of a structure

11.5.1 The structure tag

The structure tag is used as a shorthand representation for a group of structure
elements. In the previous example the tag Display_tag represents the
structure description. Note that, as with enumerated types, the compiler
allocates no memory for the structure declaration itself because it is used solely
as a template for variable declarations. When you declare a variable for a
structure, the compiler will allocate an appropriate block of memory:

struct Display_tag CurrentTime;
You must repeat the keyword struct because Display_tag is not a valid
data type, it is a structure tag. Like the enumerated type tag, it is syntactically
correct to leave the tag out:
struct {
 int DisplaySelected;
 int hundreds;
 int tens;
 int ones;
 char AorP;
};

Example 86: Declaring a structure without a tag

Complex Data Types

132

11.5.2 Using typedef to Define a Structure

If you create a structure which is used several times in your program or you are
using more than one kind of structure, it is good practice to create structure
types using typedef.

typedef struct Display_tag {
 int DisplaySelected;

int hundreds;
int tens;
int ones;
char AorP;

}DISPLAY;

DISPLAY currentTime;
DISPLAY alarmTime;

Example 87: Using typedef to clarify structure declaration

Remember that you can declare a pointer to a struct before the struct
itself is declared. The example declares a new structure type called DISPLAY.
The use of typedef helps at other points in the program when you need a
structure instance.

11.5.3 Accessing Structure Members

C includes two binary operators which allow access to structure members: the
dot operator, ., and the structure pointer operator, ->. In each case, the
binding identifier to the left of the operator indicates the structure and the
binding identifier to the right of the operator indicates the element within that
structure.

11.5.4 Indicating a Field with the Dot Operator

Once a struct variable is declared you can use the dot operator to reference
an element of the structure. The following assigns values to the elements of the
currentTime variable for the structure defined in Example 87.

currentTime.DisplaySelected = 1;
currentTime.hundreds = 9;
currentTime.AorP= ”A”;
alarmTime.AorP = currentTime.AorP;

Example 88: Accessing elements in a structure

Complex Data Types

133

11.5.5 Indicating a Field with the Structure Pointer

Structures are often manipulated using pointers. C has an operator specially for
this purpose; the structure pointer operator. In order to use a pointer to access
members of a structure the pointer must first be pointed at the structure
instance. The following example points Display_Ptr to alarmTime and
then accesses the elements of alarmTime.

struct Display_tag * Display_Ptr;
struct Display_tag {
 int DisplaySelected;

int hundreds;
int tens;
int ones;
char AorP;

}alarmTime;

Display_Ptr = &alarmTime; //point Display_Ptr to alarmTime
Display_Ptr->ones = 7; //set alarmTime.ones to 7
Display_ptr->AorP = ‘P’; //set alarmTime.AorP to P
Display_Ptr->tens = 9; //set alarmTime.tens to 9
(*Display_Ptr).tens = 9; //set alarmTime.tens to 9

Example 89: A structure accessed with a pointer

The last line (*Display_Ptr).tens = 9; does the same thing as
Display_Ptr->tens = 9;, assigns the value 9 to the tens element of
alarmTime.

Notice the parentheses around the dereference sub-expression. The dot
operator has a higher precedence than the dereference operator. If the
parentheses are omitted the expression *Display_Ptr.tens would
attempt to return the address of the tens element of the Display_Ptr
structure. Since Display_Ptr is not a structure, this would give an error.
(*Display_Ptr).value dereferences the pointer first and returns the
structure object pointed to by Display_Ptr. The expression then returns
the tens element from this structure.

11.5.6 Bit Fields in Structures

Using bit fields allows the declaration of a structure which takes up the
minimum amount of space. A bit field contains a specified number of bits, it is
a member of a structure and is accessed like any other structure member. The
following example for the Motorola MC68HC705C8 defines the Timer Control
Register (TCR) bits as bit fields in the structure called TCR.

Complex Data Types

134

struct reg_tag {
 int ICIE : 1; // field ICIE 1 bit long
 int OCIE : 1; // field OCIE 1 bit long
 int notUsed : 3 = 0; //notUsed is 3 bits and set to 0
 int IEDG : 1; // field IEDG 1 bit long
 int OLVL : 1; // field OLVL 1 bit long
} TCR;

Example 90: Bit fields in structures

C implements bit fields as variable length integer elements within a structure. A
bit field is accessed with the structure operators. You cannot use a pointer to
point to the bit field element directly; you must access it through the structure
using the -> operator:

struct reg_tag * TCRFieldPtr;
TCRFieldPtr = &TCR;
TCR.ICIE = 1; // access using dot operator
TCRFieldPtr->ICIE = 1; // using right arrow operator

Example 91: Accessing bit fields

11.5.7 Storing bit fields in memory

Storage of bit fields in memory varies from one compiler to another. Some
compilers cannot store a bit field over a word boundary. In this case the
following structure would place the second field entirely in a separate word of
memory from the first:

struct {
 unsigned int shortElement : 1; // 1 bit in size
 unsigned int longElement : 8; // 8 bits in size
} myBitField;

Example 92: Compiler dependant storage of bit fields

The order in which the compiler stores elements in a structure bit field also
varies from compiler to compiler. Some compilers may use the first word of
allocated memory to hold longElement in the previous structure. Other
compilers may use the first word to contain shortElement and part or
none of longElement.

11.5.8 The behaviour of bit fields

Bit field elements behave exactly as an int of the same size. Thus an element
occupying a single bit could have an integer value of either 0 or 1, while an
element occupying two bits could have any integer value ranging from 0 to 3.

Complex Data Types

135

You can use each field in calculations and expressions exactly as you would an
int.

11.6 Unions

C programmers developing for traditional platforms do not often use the
union data type, but it is very useful resource for the embedded system
developer. The union type filters data stored in a single block of memory
based on associated data types.

For example, when you declare two individual int and char variables the
compiler will allocate two 8 bit blocks of memory:

int anInt;
char aChar;

However, if you place both these variables in a union the compiler only
allocates a single 8 bit block of memory for both variables:

union share_tag {
 int as_Int;
 char as_Char;
} share; //share is the variable name

Example 93: Declaring a union

The format of union resembles that of the structure. You can identify a union
with a tag name. To make your union a data type you must use the typedef
keyword. In the following example, a new type called share is created.

typedef union share_tage {
 int asInt;
 char asChar;
} share_type; //share_type is the data type
share_type share; //share is the variable name

Example 94: Using typedef to declare a union

One common use of the union type in embedded systems is to create a
scratch pad variable that can hold different types of data. This saves memory by
reusing one 16 bit block in every function that requires a temporary variable.
The following example shows a declaration to create such a variable:

struct lohi_tag{
 short lowByte;
 short hiByte;
};

Complex Data Types

136

union tagName {
 int asInt;
 char asChar;
 short asShort;
 long asLong;
 int near * asNPtr;
 int far * asFPtr;
 struct hilo_tag asWord;
} scratchPad; //scratchPad is the variable name

Example 95: Using a union to create a scratch pad

Another common use for union is to facilitate access to data as different
types. For example, the Microchip PIC16C74 has a 16 bit timer/counter
register called TMR1 made up of two 8 bit registers called TMR1H (high byte)
and TMR1L (low byte). It is possible that sometimes you would like to access
the register as two 8 bit values or as one 16 bit value. A union will facilitate this
type of data access:

struct asByte {
 int TMR1H; //high byte
 int TMR1L; //low byte
}
union TIMER1_tag {
 long TMR1_word; //access as 16 bit register
 struct asByte TMR1_byte;
} TMR1;

Example 96: Using a union to access data as different types

11.6.1 Retrieving a Union Element

As with structures, union elements are accessed with the dot and right arrow
operators. Use the dot operator to specify an element by placing it after the
name given to the union. In the following example, the data in the
scratchPad memory block is interpreted as a char.

scratchPad.asChar = ‘b’; //assign b to scratchPad
tempChar = scratchPad.asChar; //retrieve as character

Example 97: Accessing a union element with the dot operator

If you indicate the union with a pointer, use the right arrow operator to specify
an element. In the following example, scratchPad is interpreted as an int.

union tagName * scratchPad_ptr; //declare pointer type
scratchPadPtr = &scratchPad; //point to scratchPad
someInt = scratchPad_ptr->asInt; //retrieve as integer

Example 98: Using the right arrow operator to access a union member

Complex Data Types

137

11.6.2 Using Unions with Incompatible Variables

Since the compiler uses a single block of memory for the entire union, it
allocates a block large enough for the largest element in the union. For example,
the compiler will allocate a 16 bit block for the union scratchPad in
Example 98 because the elements asLong and asFPtr require 16 bits16.

The compiler will align the first bit of each element in the memory block. If you
assign a 16 bit value to scratchPad and then read it as an 8 bit value, the
compiler will return the first 8 bits of the data stored.

NOTE
Verify your target hardware’s method for storing 16 bit integer values. Some
hardware stores long data with a higher address for the low byte. This is called big
endian because the “big end” comes at the end. Other hardware stores the high
byte at the higher address. This is called little endian because the “little end” comes
last. The results returned from extracting 8 bits from a 16 bit value will differ
depending on the hardware storage method.

The scratchPad variable can handle the 16 bit value as a word and can
provide access through a structure to either byte in the word. This is useful so
you can use the asWord element to return a specific part of the word.

scratchPad.asLong = someLong;
someInt = scratchPad.asWord.lowByte;

Example 99: Returning the low Byte of a word

Notice that the scratchPad example assumes the target hardware is big
endian (high byte last). For a little endian target (low byte last), the asWord
element needs to be defined as follows17. Notice that redefinition does not
affect the statements in the previous example.

struct hilo_tag {
 short highByte;
 short lowByte;
} asWord;

Example 100: Returning a specific part of a word for little endian

16 asInt may require 16 bits, depending on the compiler.

17 To promote even greater portability and clarity define a new data type called BYTE
based on the underlying 8 bit data type on the target hardware.

Complex Data Types

138

The problem of incompatible variables is exacerbated when the variables have
different underlying storage methods. For example, the following union gives
surprising results if you do not keep track of the last data assigned to it. Since
floating point numbers typically use mantissa/exponent representation the
result may not be as expected:

union {
 int asInt;
 float asFloat;
} someUnion;

someUnion.asFloat = someFloat;
someInt = someUnion.asInt;

Example 101: Incompatible variables with different storage methods in unions

139

12. Storage and Data Type Modifiers
C provides the capability to further specify how stored values should be
interpreted with the use of storage class and data type modifiers. Many of
these modifiers have been introduced briefly in other sections of this book.
Both storage class and data type modifiers are keywords which are included in a
variable or function data type declaration.

12.1 Storage Class Modifiers

Storage class modifiers control memory allocation for declared identifiers. C
supports four storage class modifiers18 which can be used in variable
declarations: extern, static, register and auto. Only extern is
used in function declarations.

When the compiler reads a program it must decide how to allocate storage for
each identifier. The process used to accomplish this task is called linkage. C
supports three classes of linkage – external, internal and none. C uses identifier
linkage to sort out multiple references to the same identifier.

12.1.1 External linkage

References to an identifier with external linkage throughout a program all call
the same object in memory. There must be a single definition for an identifier
with external linkage or the compiler will give an error for duplicate symbol
definition. By default, every function in a program has external linkage. Also by
default, any variable with global scope has external linkage.

12.1.2 Internal linkage

In each compilation unit19, all references to an identifier with internal linkage
refer to the same object in memory. This means that you can only provide a
single definition for each identifier with internal linkage in each compilation
unit of your program.

18 The ANSI standard specifies a fifth modifier: typedef
19 A compilation unit is not always a single file of code because of #include files

Storage and Data Type Modifiers

140

No objects in C have internal linkage by default. Any identifier with global
scope (defined outside any statement block), and with the static storage class
modifier, has internal linkage. Also, any variable identifier with block scope
(defined within a statement block), and with the static storage class
modifier, has internal linkage.

Although you can create local variables with internal linkage scoping rules
restrict local variable visibility to their enclosing statement block. This means
that you can create local variables whose values persist beyond the immediate
life of the statement blocks in which they appear. Normally the computer re-
allocates local variable space every time a statement block is entered. If a local
variable is declared as static, space is allocated for the variable once only –
the first time the variable is encountered.

NOTE
Unlike other internal linkage objects, static local variables need not be unique within
the compilation unit. They must be unique within the statement block which contains
their scope.

Objects with internal linkage typically occur less frequently than objects with
external or no linkage.

12.1.3 No linkage

References to an identifier with no linkage in a statement block refer to the
same object in memory. If you define a variable within a statement block, you
must provide only one such definition. Storage for objects with no linkage is
traditionally allocated from stack space.

Any variable declared within a statement block has no linkage by default, unless
the static or extern keywords are included in the declaration. Both
function return values and function parameters have no linkage, allowing
recursive function calls. Each copy of a recursively called function can allocate
private copies of parameters and return values.

12.1.4 The extern Modifier

An identifier with external linkage can be used at any point within a program as
long as it is visible. Suppose the function int Calculate_Sum() is
declared in a source file. If you want to use this function in any other
compilation unit, you must tell the compiler where to look for the function

Storage and Data Type Modifiers

141

definition. The concept is identical to prototyping a function so that it can be
used before it is defined. To declare an external function use the extern
keyword:

extern int Calculate_Sum();

When the compiler encounters an external function declaration it interprets it as
a prototype for the function name, type and parameters. The extern keyword
tells the compiler that the function definition is in another compilation unit.
The compiler leaves the connection of such code to the linker whose job it is to
resolve references to symbols between compilation units.

If you build a library of functions to use in many programs it is good practice to
include extern function declarations in a header file which is included in the
source files for your program.

You can declare an external function within a statement block using the
extern keyword. This informs the compiler that the function is defined
elsewhere in the program and restricts the scope of the function to the
statement block.

For example, suppose the initialize() function is in a subsidiary source
file and you want it visible only to main(). The following code lets main()
know about initialize() while hiding it from other functions in the same
source file as main().
 void main(void) {
 extern int initialize(void);
 initialize();
 }

Example 102: Restricting a function’s scope by declaring it as extern

12.1.5 Global Variables and extern

Like functions, global variables have external linkage. To use a global variable in
more than one source file, you must declare it as extern:

extern int myGlobalInt;

The compiler interprets an external declaration not as a variable declaration but
as a notice that the variable definition occurs in another file. You must link files
with external declarations with a main module whose source contains the
declaration for the variable:

int myGlobalInt;

Storage and Data Type Modifiers

142

Developers often collect global variable definitions in a header file called
globals.h. Each declaration in the file will look similar to:

EXT int myGlobalInt;

Preprocessor directives are placed at the top of the file to handle the EXT tag in
each definition:

#ifdef MAIN
 #define EXT “ ”
#else
 #define EXT “extern”
#endif

Example 103: Using preprocessor directives to declare extern global variables

Each program source module will contain the line #include
<globals.h>. At the top of the main source file, before global.h is
included, the directive #define MAIN should appear. This keeps global
variable declarations in one place and ensures that the extern keyword is only
used when needed. The main source file contains definitions for the variables
without the extern keyword.

12.1.6 The static Modifier

By default, all functions and variables declared in global space have external
linkage and are visible to the entire program. Sometimes you require variables
or functions which have internal linkage: they are visible within a single
compilation unit. Use the static keyword to restrict the scope of variables:

static int myGlobalInt;
static int staticFunc(void);

Example 104: Using the static data modifier to restrict the scope of variables

These declarations create global identifiers which are not accessible by any
other compilation unit. Any function within the same compilation unit as the
static variable declarations can access these identifiers.

12.1.7 The visibility of static variables

The static keyword can be used to create permanent local variables. For
example, consider the task of tracking the number of times a recursive function
calls itself (the function’s depth). You can accomplish this using a static
variable:

Storage and Data Type Modifiers

143

int myRecurseFunc(void) {
 static int depthCount=1;
 depthCount += 1;
 if ((depthCount > 10) || (!DONE)) {
 myRecurseFunc();
 }
}

Example 105: Using static variables to track function depth

The function in Example 105 contains an if statement which stops it from
recursing too deeply. The static variable depthCount is used to keep
track of the current depth. Normally, when a function is called the computer re-
allocates memory for its automatic local variables. Memory for static
variables, however, is only allocated once. The static variable
depthCount retains its value between function calls and conserves memory
because 8 bits is not allocated every time myRecurseFunc() calls itself.

Because depthCount is defined inside the myRecurseFunc()statement
block, it is not visible to any code outside the function. Therefore, if you have
another recursive function you can use the variable name depthCount20.

12.1.8 The register Modifier

The register keyword is not often used in embedded systems programming
because the target hardware does not have the variety of registers available on
traditional C platforms.

When you declare a variable with the register modifier you inform the
compiler to optimize access to the variable for speed. Traditionally, C
programmers use this modifier when declaring loop counter variables:

{
 register int myCounter=1;
 while (myCounter<10) {
 ...
 myCounter += 1;
 } //end while
} // enclosed block enforces reallocation of myCounter

Example 106: Using the register data type modifier

20 If functions are mutually exclusive use a global variable to save memory.

Storage and Data Type Modifiers

144

Unlike other storage class modifiers, register is simply a recommendation
to the compiler. The compiler may use normal memory for the variable if it
determines that such an allocation will allow the fastest access to the variable.

Because of the scarcity of registers on 8 bit machines and the desire for size
optimization rather than speed, the register keyword is not very useful for
embedded system programmers.

Notice the technique used in Example 106 places the register variable
declaration and its associated while loop inside a statement block. This forces
the compiler to reallocate storage for myCounter as soon as the loop is
finished – if the compiler uses a register to store myCounter, it will not tie up
the register longer than necessary.

NOTE
If you use register ensure that the code for the variable declaration is close to the
code where the variable is used. This minimizes the overhead expense of
dedicating a register for storage of a single particular variable.

12.1.9 The auto Modifier

The auto keyword denotes a temporary variable. You may only use auto
with variables because C does not support functions with local scope. Since all
variables declared inside a statement block have no linkage by default, the only
reason to use the auto keyword is for clarity:
int someFunc(NODEPTR myNodePtr) {
 extern NODEPTR TheStructureRoot;

// global pointer to data structure root
 auto NODEPTR tempNodePtr;

// temporary pointer for structure manipulation
 ...
}

Example 107: Using the auto data modifier

In this example, we declare tempNodePtr as an auto variable to make it
clear that, unlike the global TheStructRoot pointer, tempNodePtr is
only a temporary variable.

Storage and Data Type Modifiers

145

12.2 Data Type Modifiers

Data type modifiers alter the way information is recorded and retrieved. Type
modifiers extend the basic data types available. Type modifiers apply to data
only, not to functions. You can use them with variables, parameters, and
returned data from functions.

Some type modifiers can be use with any data while others are used with
specific types of data such as pointers.

12.2.1 Value Constancy Modifiers: const and volatile

The compiler’s ability to optimize a program relies on several factors. One of
these is the relative constancy of the data objects in your program. By default,
variables used in a program change value when the instruction to do so is given
by the developer.

const
Sometimes you want to create variables with unchangeable values. For example,
if your code makes use of *, the constant PI, then you should place an
approximation of the value in a constant variable:

const float PI = 3.1415926;

When your program is compiled, the compiler allocates ROM space for your
PI variable and will not allow the value to be changed in your code. For
example, the following assignment would produce an error at compile time:

PI = 3.0;

volatile
Volatile variables are variables whose values may change without a direct
instruction. For example, a variable which contains data received from a port
will change as the port value changes.

Using the volatile keyword informs the compiler that it can not depend
upon the value of a variable and should not perform any optimizations based
on assigned values.

Storage and Data Type Modifiers

146

12.2.2 Allowable Values Modifiers: signed and unsigned

You can direct the compiler to permit integer data types to contain negative as
well as positive values. You can also restrict integer data types to positive values
only. The sign value of an integer data type is assigned with the signed and
unsigned keywords.

signed
The signed keyword forces the compiler to use the high bit of an integer
variable as a sign bit. If the sign bit is set with the value 1 then the rest of the
variable is interpreted as a negative value. By default, short, int and long
data types are signed and the signed keyword need not be used. The char
data type is unsigned by default. To create a signed char variable you must use
a declaration such as:

signed char mySignedChar;

If you use the signed keyword by itself the compiler assumes that you are
declaring an integer value. Since int values are signed by default, programmers
rarely use the syntax: signed mySignedInt;.

unsigned
To create unsigned short, int, or long data types use the unsigned
keyword. You need never use the keyword with char values because they are
unsigned by default. This keyword forces the computer to read the high bit
as part of the variable value:

unsigned int myUnsignedInt;

If you use the unsigned keyword alone the compiler assumes the variable
you are declaring is an int. C programmers often use the following syntax:

unsigned myUnsignedInt;

12.2.3 Size Modifiers: short and long

The short and long modifiers instruct the compiler how much space to
allocate for an int variable. The resulting variable is interpreted as an int, but
the number of bits used to store the variable value may change.

Storage and Data Type Modifiers

147

short
The short keyword declares an int of the same size as a char variable:
usually 8 bits:

short int myShortInt;

On microcontrollers where the natural machine unit is the byte a short int
is usually the same size as an int. Some compilers allow two byte int
variables. In these cases, the short int remains 8 bits in size.

If you use the short keyword alone, the compiler assumes the variable is a
short int type:

short myShortInt;

long
The long keyword declares an int twice as long as a normal int variable:

long int myLongInt;

On some computers a long is not twice the size of an int. However, long
will always be the same size or larger than int and short will always be the
same size or smaller than int.

On microcontrollers a long int occupies two bytes. If the compiler allows
you to use 16 bit int data types, the long and int are usually the same size
because of the fact that long data types always occupy two bytes.

12.2.4 Pointer Size Modifiers: near and far

The near and far keywords are common extensions to standard C. They
allow different size pointers to address different areas of computer memory.

near
The near keyword creates a pointer which points to objects in the bottom
section of addressable memory. These pointers occupy a single byte of memory,
and the number of memory locations to which they can point is limited to the
first 256 locations, or from $0000 to $00FF.

int near * myNIntptr;

Storage and Data Type Modifiers

148

For efficient RAM access, most microcontrollers place user RAM in the low
memory addresses. Thus, near pointers usually point to data stored in user
RAM such as user defined variables.

far
The far keyword creates a pointer which can point to any data in memory:

int far * myFIntptr;

These pointers take two bytes of memory which allows them to hold any legal
address location from $0000 to $FFFF. far pointers usually point to objects
in user ROM, such as user defined functions and constant variables.

12.2.5 Using near and far pointers

Each microcontroller has different memory usage and the specific
implementation of near and far pointers will vary depending on the target
platform. In general, microcontrollers fall into two groups:

1) Harvard architecture machines that maintain separate memory areas for
data memory, RAM, and program memory, ROM.

2) Von Neumann architecture machines which arrange ROM and RAM into
one contiguous address space.

Regardless of machine architecture, the compiler uses near pointers to point
to commonly referenced data such as variables. The far pointers are harder to
manipulate and are used for less common pointing tasks such as pointing to
functions and constants.

12.2.6 Default pointer type

Since the implementation of near and far pointers varies from target to
target the default method of creating pointers also varies. For example, what
kinds of pointers do the following two declarations generate?

int * myIntPtr;
const int * myConstIntPtr;

On most target machines, the compiler generates a near pointer for the first
declaration and a far pointer for the second. Since the compiler knows that
const int data is stored in ROM it knows a far pointer is needed.

Storage and Data Type Modifiers

149

The following declaration generates a far pointer to the void function
initPtr knowing that the *initPtr() function will get stored in ROM.

void (*initPtr)(STATSTRUCT * statusPtr){
 // contents of function
};

Example 108: The far pointer type as default

If you use pointers extensively you must know the default pointer type. Many
embedded developers do not use pointers extensively as they are very CPU
intensive. This is especially true with the far pointer double byte values.

151

13. The C Preprocessor
Every C language environment has a preprocessor. As the name suggests, the
preprocessor examines program code before it is processed by the compiler.
The preprocessor reads a source code file line by line and performs the
preprocessor directives it finds.

The preprocessor does not understand the C language. This can be a source of
great trouble for program developers as it is easy to miss problems caused by
passing the preprocessor invalid commands. Two common errors are including
a semicolon to terminate a macro definition and placing a comment on the
same line as a directive. Since the preprocessor does not understand the C
interpretation of semicolons or comments it will attempt to read these things as
part of the directive.

Some C environments support an option which invokes only the preprocessor
for a source file. This has the advantage of letting you look at the preprocessor
results before the source gets passed to the compiler.

13.1 Preprocessor Directive Syntax

Any source code line that begins with the hash character, #, is a command to
the preprocessor and is called a preprocessor directive. It is good practice to
justify these directives against the left hand margin to distinguish them from
your C code. Historically, pre-ANSI compilers required preprocessor directives
to begin in column one of a source code line. This practice should not be
followed when you nest directives:

#if DEBUG
 #include <debug.h>
#endif

Example 109: Nesting preprocessor directives

The hash character must be the first non-white space character in a
preprocessor directive. When a line begins with # the preprocessor assumes
that the entire line is part of the same directive. To continue a single directive
past a single line place the continuation character \ at the end of the line. When
this character appears the preprocessor attaches the contents of the next line to
the end of the current directive.

The C Preprocessor

152

13.2 White Space in the Preprocessor

Unlike the C compiler, white space is very important to the preprocessor. For
example, in C both the following function definitions are acceptable:

int smallest (int arg1, int arg2);
int largest(int arg1, int arg2);

The preprocessor is not so forgiving. Only one of the following two macros
performs as expected:

#define SMALLEST (arg1,arg2) ((arg1)<(arg2)?(arg1):(arg2))
#define LARGEST(arg1,arg2) ((arg1)<(arg2)?(arg1):(arg2))

SMALLEST is defined as an object macro or symbolic constant, not as a function
macro like LARGEST as intended. Thus a call to SMALLEST will be expanded
by the preprocessor into the monstrosity:

 (arg1,arg2)((arg1)<(arg2)?(arg1):(arg2))(oneInt,twoInt);

13.3 File Inclusion

The #include directive instructs the preprocessor to replace the directive
with the contents of a specified file. That file need not contain C source code;
for example, it can consist of nothing but preprocessor directives. In embedded
system programs a header file which describes the resources of the target
hardware is usually included:

#include <machine.h>

When the preprocessor sees this directive it will look for the file machine.h
and replace the directive with the contents of machine.h. The preprocessor
will then continue searching through source code. The next line it will look at
will be the first line of the machine.h file.

If the preprocessor cannot find the specified file, it will give an error and quit
processing. Where does the preprocessor look for the file?

The C Preprocessor

153

13.3.1 File Inclusion Searches

<filename.h>
If you surround the file name with angle brackets the preprocessor will look for
the file in a system dependent location determined by the compiler you are
using.

In general, angle brackets produce two types of searching. On some systems,
the preprocessor will look through a directory or list of directories you have
specified as containing the library and header files for your compiler. On other
systems the preprocessor will look through a directory or list of directories
specified in the operating system environment as a location for commands.

“filename.h”
If you surround the file name with double quotes, the preprocessor behaviour
is more complex.

1) The preprocessor looks for the file in a system dependent location. This may
be the same location used for <> inclusion; however, it usually is not. If
the preprocessor searches for include files in a single location, the
preprocessor does not support “” inclusion and treats it as <> inclusion.

2) If the file is not found, the preprocessor will retry the directive as if the file
were surrounded by angle brackets.

In general practice, the double quotes signal the preprocessor to look for the
file in the same place as the source code file containing the directive.

NOTE
If the preprocessor can not find the file in the place for “” inclusion it will reprocess
the directive as if it used <> inclusion syntax.
The common misconception that “” inclusion refers to the current directory can lead
to errors. You must check your compiler documentation to determine exactly where
and how “” and <> inclusion look for files.

13.4 Defining Symbolic Constants

The #define directive instructs the preprocessor to create a symbolic
constant.

The C Preprocessor

154

#define MAXINT +32768
This directive creates a symbolic constant MAXINT and associates it with a
value of +32768. Here we intend MAXINT to stand for the largest 16 bit
signed integer value the target hardware can represent.

When the preprocessor reaches the #define directive it places MAXINT into
its list of defined symbols. The preprocessor will replace MAXINT with its
defined value in any subsequent lines that contain the MAXINT symbol.

The association of this symbolic constant with its value is not passed on to the
compiler. When the compiler examines the source file, the symbol MAXINT
does not appear – the preprocessor has replaced it with the appropriate value.
Symbol expansion does not happen within other preprocessor directives. You
can use symbolic constants inside macro definitions, but the expansion of the
symbol happens after the macro expansion. The symbol is first placed in the
source code and then expanded.

There are two main reasons why symbolic constants are useful:

!!!! Symbolic constants clarify ambiguous source code
You can place a meaningful word in your source code, instead of a potentially
ambiguous value. For example, the number 3.0e+5 might not be clear.
However, suppose we include the following directive:

#define LIGHTSPEEDkps 3.0e+5

You can see that the symbol might convey more meaning in the code than its
value alone.

"""" Symbolic constants facilitate code maintenance
Symbolic constants, like variables, reduce typing errors. Once MAXINT is
defined its value is assigned in a single location in your source code. If you need
to change the value of MAXINT you need only edit the #define directive
and recompile. Without the directive you would have to change every
occurrence of the value in your program. Additional problems are encountered
if the same value has different meanings.

13.4.1 The #undef directive

You may want to redefine the value of a symbolic constant. The preprocessor
may give an error if you attempt to define a symbol that is already defined.

The C Preprocessor

155

According to the ANSI standard you can redefine a symbolic constant with a
replacement string which is exactly similar. Despite this, it is best to be
scrupulous about using #undef for symbols before you redefine them.

You must tell the preprocessor to remove the symbol from its list before you
can redefine it.

#undef MAXINT
#define MAXINT +127

Example 110: Redefining a constant using #undef

Suppose you have a small set of functions that you want to keep 8 bit portable,
while allowing remaining functions to use 16 bit int values. The following
directives would be used:

1) Define MAXINT for 16 bit #define MAXINT +32768
2) Undefine MAXINT #undef MAXINT
3) Define MAXINT for the 8 bit #define MAXINT +127

Undefining a symbol has no effect if a symbol is not defined, the preprocessor
simply ignores the #undef directive.

13.4.2 Defining “empty” symbols

Another useful feature of symbolic constants is that they do not have to be
defined with associated values. For example:

#define 8BITINT

This directive instructs the preprocessor to place the symbol 8BITINT into its
symbol list with no associated value. If you use the symbol in your code the
preprocessor replaces it with nothing. This can easily lead to compiler errors.

13.5 Defining Macros

Function macros are a powerful aspect of the C preprocessor. Macros are
defined using the #define directive.

A function macro is a replacement macro with an argument list. When the
preprocessor encounters a macro reference it performs a text replacement and
retains the arguments listed with the macro in the source code. The
preprocessor can provide a means for data abstraction – each invocation of a
function macro deals with different values in a predictable way.

The C Preprocessor

156

A simple example will clarify the behaviour of macros:
#define SMALLEST(arg1,arg2) ((arg1)<(arg2)?(arg1):(arg2))

// program code
someInt = SMALLEST(oneValue, twoValue);

Example 111: Defining and calling a macro

The #define in Example 111 creates a macro called SMALLEST which
returns the smaller of two arguments. The line which calls the function macro
looks as follows after it has been processed by the preprocessor:

someInt = ((oneValue)<(twoValue)?(oneValue):(twoValue));

NOTE
Because a function macro looks similar to a function call it can be difficult to tell
macro functions and regular functions apart. It is good coding practice to use upper
case for all macro names so they are easily distinguished from functions code.

13.5.1 Macro Expansion

You can pass expressions as arguments to a function macro. There is a
difference between passing expressions to macros and passing them to
functions. When you pass expressions to functions they are first evaluated and
the resulting values are received by the function. As the preprocessor simply
performs text replacement; it does not evaluate expressions passed to a macro.
For this reason you must use macros carefully. For example, here is a common
macro error:

#define SQUARE(x) x * x
Consider the following call to SQUARE:

someInt = SQUARE(a+1); // before expansion
someInt = a+1 * a+1; // after expansion

C precedence rules produce an unintended result from this calculation. The use
of parentheses is important in a macro definition using expressions. A better
definition of SQUARE looks like:

#define SQUARE(x) ((x) * (x))
The parentheses around each parameter reference will preserve the expression’s
internal precedence and the parentheses around the macro will preserve its
precedence with respect to other code.

The C Preprocessor

157

Even with parentheses, using SQUARE as follows will produce unexpected
results:
someInt = SQUARE(a++); // before expansion
someInt = ((a++) * (a++)); // after expansion

Because a is not evaluated in the same manner as it would be in a function call,
it is evaluated twice at compile time and a is incremented before the
multiplication. If SQUARE were a function, a would have been evaluated once
at compile time and the resulting value passed to the function. You can see the
value in clearly distinguishing the function and macro names.

NOTE
Using any expression that causes side effects as an argument to a macro or a
function call is not good practice and can cause unexpected results.

13.5.2 # and ## Operators

To expand macro parameters inside quotes you need to use the # and ##
operators

13.6 Conditional Source Code

The preprocessor supports directives which allow conditional compilation of
your source code. You can bracket program portions and let the preprocessor
decide whether or not to pass these portions of the code on to the compiler.

13.6.1 #if and #endif

The #if and #endif directives include code when the #if expression
evaluates to a non-zero integer value:

#define DEBUG 1
#if DEBUG
 #include <debug.h>
#endif

Example 112: Using #if and #endif to conditionally compiler code

Blocks of code such as that in Example 112 are often used to produce both a
debugging and final version of a program. The first line defines the DEBUG
symbol with the value 1. The #if directive tests its argument expression to see
if it has a non-zero constant integer value. When DEBUG has a non-zero value,

The C Preprocessor

158

the preprocessor will #include a header file created for debugging called
debug.h.

Because #if accepts an expression as an argument, you can also do the
followings to check for the value assigned a symbolic constant:
#define DEBUG_STATE 1
#if DEBUG_STATE == 1
 #include <debug1.h>
#endif

Example 113: Using expressions in #if directives for conditional compilation

13.6.2 The defined() Function

The constant integer expression tested by #if cannot contain the sizeof()
function, type casts, or enum constants. However, you can use the
defined() function with #if directives. The defined() function
returns 1 if its argument is a defined symbol. If the symbol is not defined, it
returns 0. Therefore, we can rewrite Example 113 as follows:

#define DEBUG
#if defined(DEBUG)
 #include <debug.h>
#endif

Example 114: Using the defined() function for conditional compilation

You can also use !defined() to test if a symbol has not been defined. It will
return 1 if its argument is not a defined symbol and 0 if the argument is defined:
#if !defined(DEBUG)
 #include <machine.h>
#endif

Example 115: Using !defined() to test if a symbol has not been defined

13.6.3 The #else and #elif Directives

The C preprocessor includes the ability to choose between two compilation
blocks using the #else directive. For example, suppose that the debug header
file includes descriptions of target resources. To avoid including these twice,
you could write:

The C Preprocessor

159

#define DEBUG 1
#if DEBUG == 1
 #include <debug.h>
#else
 #include <machine.h>
#endif

Example 116: Using #else and #elif to choose between compilation blocks

If you want to build a switch-like structure of compilation blocks, use the
#elif directive inside a #if and #endif pair. You can use as many #elif
directives as necessary but you can only have one #else, which must come
after the #elif directives.

#define STATE DEBUG
#if STATE == DEBUG
 #include <debug.h>
#elif STATE == TESTING
 #include <testing.h>
#elif STATE == RELEASE
 #include <machine.h>
#endif

Example 117: Using #elif, #if and #endif for conditional compilation

13.6.4 #ifdef and #ifndef

If you do not use the defined or !defined operators in a directive, you
can use the directives #ifdef or #ifndef. #ifdef FOO is equivalent to
#if defined(FOO) while #ifndef FOO is equivalent to
#if !defined(FOO):

#define DEBUG
#ifdef DEBUG
 #include <debug.h>
#endif
#ifndef DEBUG
 #include <machine.h>
#endif

Example 118: Using #ifdef and #ifndef

13.7 Producing Error messages

The #error directive halts the preprocessor and produces a specified error
message. Most compilers provide additional information with your message,

The C Preprocessor

160

such as the name of the source file and the position of the error directive within
that file:

#if STATE == DEBUG
 #include <debug.h>
#elif STATE == RELEASE
 #include <machine.h>
#else
 #error Bad or missing STATE value: need DEBUG or RELEASE
#endif

Example 119: Using the #error directive

13.8 Defining Target Hardware

The standard C environment allows the definition of compiler-specific
extensions with the #pragma preprocessor directive. The preprocessor may
deal with #pragma directives in your source code or it may be the compiler
which acts upon these directives.

ANSI C has one prescribed rule about #pragma directives – if a #pragma
directive is not recognised, it is ignored it and passed on. This ensures that
#pragma directives that are unknown will not affect your code.

The #pragma directive is used most commonly in embedded development to
describe specific resources of your target hardware such as available memory,
ports, and specialized instruction sets.

13.9 In-line Assembly Language

While not required by ANSI C, most embedded development compilers
provide a means of incorporating assembly language in C programs. One
common way of accomplishing this is using preprocessor directives.

13.9.1 The #asm and #endasm Directives

Some compilers use #asm and #endasm directives to signal assembly
language code boundaries. Everything lying between the directives is assumed
to be assembly language code and will be processed by a macro assembler
which is either built-in to the compiler or a secondary program called by the
compiler.

161

14. Libraries
Technically, a library in C is simply a collection of C functions. Libraries usually
contain functions which serve a common purpose, such as interfacing to an
LCD, using a timer, providing mathematical capabilities, or converting data
types. The functions within a library are a collection of the basic operations
defined by the scope of the library. For instance a math library would contain
routines for multiplication, division, and modulus.

Because high level languages are very portable, libraries written in high level
languages are also very portable. Portability is made possible by the
standardization of high level languages such as C. C language code written on a
PC will compile and run on MAC or UNIX machines often with little or no
alternation. Similarly, C code written for a specific 8 bit microcontroller can be
compiled and run on a different microcontroller with very minor changes to the
code.

Although libraries for math and data type conversion are useful, they are not
the libraries most useful in embedded systems development. By definition a
microcontroller embedded within a system needs to receive data in and sends
data out. This is most often done with devices such as keyboards, LCD
displays, serial interfaces, and I/O ports. At times it is necessary to convert this
data to a specific format so that it can be understood. Devices such as Analog
to Digital and Digital to Analog converters provide such conversion
capabilities. Libraries which support peripheral devices are very useful in
embedded systems development.

14.1 Portable Device Driver Libraries

C’s portability allows us to implement Portable Device Driver libraries. A
portable device driver is a standard technique for using a specific peripheral
device with a range of different microcontrollers, both between and within
microcontroller families. Why would we want to do this? The main reason is to
save development time. In the embedded marketplace time to market is
probably the most important mitigating factor in the design process.

The advantages realized with portable device driver libraries are:

1) We do not need to “reinvent the wheel”. Device drivers would not have to
be rewritten for every new project.

Libraries

162

2) The libraries have been thoroughly tested and debugged allowing faster
hardware/software integration

3) The embedded programmer does not need to know the low level hardware
details of how the device operates.

4) Support for multi-controller systems which use microcontrollers from
different families. C source code can be ported between families by
changing the included header file. This saves the embedded programmer
from having to learn implementations on different microcontroller.

5) Software reusability is maximized.

Some useful portable libraries would provide routines for:
1) SPI (Serial Peripheral Interface)
2) Microwire
3) SCI (Serial Communications Interface)
4) UART (Universal Asynchronous Receiver Transmitter)
5) USART (Universal Synchronous Asynchronous Receiver

Transmitter)
6) Analog to Digital conversion and Digital to Analog Conversion
7) I/O ports
8) LCD displays
9) PWM (Pulse Width Modulation)
10) Timers

14.2 An Example Development Scenario

Suppose you have been given the task of implementing a SPI serial interface
between a Microchip PIC16C74, National COP8SAA and a Motorola
68HC05C8. You have only programmed for the Microchip PIC and you are not
familiar with SCI serial interfaces. You could learn how SPI works, find out
how it is implemented on the different chips, learn how to code for the
different chips, write drivers for each chip, and then finally debug the hardware.
This development process could take a very long time! By drawing on a
portable library for the SPI you can write C code using library functions and
avoid delays in project development.

Libraries

163

14.2.1 How SPI Works

SPI is a synchronous a three wire serial communications interface based on a
master/slave relationship. The master and slave both contain serial shift
registers that are connected to form a circular shift buffer. The master supplies
the clock which is used to shift data out of the master and into the slave and
simultaneously out of the slave and into the master.

SPI is implemented in many different ways, but the same basic functionality
holds for each implementation. For example, the COP8SAA7 has a Microwire
Plus serial interface which SPI compatible. The 68HC05C8 contains the SIOP
serial interface which is also SPI compatible. The Microchip PIC16C74 calls its
SPI device SPI. Each of these devices has specific names and techniques for
SPI serial communication. Using portable libraries we can avoid the confusion
involved in using many different device-specific routines.

The following C program performs master functions. The example shown is
configured for the Microchip PIC16C74:
#define NOLONG //unique to the MPC series of header files
#define REC_SIZE 5
//Use the proper header and driver for the COP8 and 68HC05
#include "16c74.h"
#include "SPI.MPC”

char SPI_in[REC_SIZE];
const char o[] = {0b10000001,0b10000010,0b01000100,
 0b00001000, 0b00010000};

void main(void){
 SPI_array_get(SPI_in); //set the array to store data in
 SPI_array_send(o); //sets the array to send data from
 //The following statement configures the SPI
 //The argument that is passed depends on the desired
 //configuration. The instructions on how to set this
 //are found in the device driver headers
 SPI_set_master(0b00100000);
 SPI_flush(); //send a byte to get everything synched
 SPI_send_rec(0,4); //initiate the send/receive function

 while(1){
 }
}

Example 120: Master function for PIC16C74 SPI communication

The master source code in Example 120 can be compiled for different chips
with very minor changes and the library calls would work as expected.

Libraries

164

The library calls are those which begin with the letters SPI such as
SPI_array_get(SPI_in), SPI_array_send(o);,
SPI_set_master(0b00100000);, SPI_flush(); and
SPI_send_rec(0,4);. We will now examine some of these functions in
detail by looking at excerpts from specific device libraries.

14.2.2 SPI_set_master(ARGUMENT);

This function configures the SPI. The following sections describe how it is
implemented in the libraries for the individual chips.

On the Microchip PIC16C74
The SPI functions may be used when the synchronous serial port on the
Microchip PIC is configured in SPI mode. You must configure the SSPCON
register when using SPI. The SSPCON set up for SPI is:

SSPM<3:0>
"# 0000 SPI master clock = osc/4
"# 0001 SPI master clock = osc/16
"# 0010 SPI master clock = osc/64
"# 0011 SPI master clock = TMR2_output/2
"# 0100 SPI slave mode, clock = SCK pin, SS pin control enabled
"# 0101 SPI slave mode, clock = SCK pin, SS pin control disabled, SS can

be used as I/O pin

CKP<4>
"# 1 Transmit on falling edge, receive on rising edge. Idle clock is high
"# 0 Transmit on rising edge, receive on falling edge. Idle clock is low

SSPEN<5>
"# 1 Enable serial port, configure SCK, SDO and SDI as serial port pins
"# 0 Disable serial port, configure pins as I/O

SSPOV<6>
"# 1 A new byte is received while SSPBUF register still holds previous

data. If an overflow occurs the data in SSPSR is lost. Overflow can only
occur in slave mode. The user must read SPBUF to avoid setting the
overflow. In master mode the overflow bit is not set since each new
reception and transmission is enacted by writing to SSPBUF

Libraries

165

WCOL<7>
"# 1 The SSPBUF register is written while transmitting the previous

word. Must be cleared in software.
"# 0 No Collision

/*===
This function configures the SPI and sets up the proper
pins for serial port operation.
ARGUMENTS:
temp, The byte to set the SPI
==*/

void SPI_set_master(registerw temp){
 SSPCON = temp;
 TRISC.SDI = 1; //configure TRIS register for serial
 TRISC.SDO = 0;
 TRISC.SCK = 0;
}

Example 121: Setting up the SPI on the Microchip PIC16C74

On the Motorola 68HC05
/*===
This function configures the SPI and sets up the proper
pins for serial port master mode operation.
ARGUMENTS:
NONE
==*/

#define SIOP_set_master() SCR.SPE = 1; SCR.MSTR = 1;

//this is used to create a uniform interface
#define SPI_set_master(ARG) SIOP_set_master()

Example 122: Setting up SPI on the Motorola 68HC705C8

On the National Semiconductor COP8
/***
This function sets the MW in master mode and sets the SK
clock time and sets the SO and SK pins on port G.
ARGUMENTS: ARG1.0 = CNTRL.SL0, ARG1.1 = CNTRL.SL1
CONFIGURATION SK Cycle Time
CNTRL.SL0=0 CNTRL.SL1=0 2Tc
CNTRL.SL0=0 CNTRL.SL1=1 4Tc
CNTRL.SL0=1 CNTRL.SL1=X 8Tc
***/

Libraries

166

#define MW_set_master(ARG1) {CNTRL.SL0= ARG & 0b00000001;\
 CNTRL.SL1= 0b00000010 & ARG;\
 master();}

void master(void){

PORTGC.4 =1;
PORTGC.5 =1;

 PORTGC.6 = 0;
PORTGD.6 = 1;
CNTRL.MSEL = 1;

}
//an alias to create a uniform library
#define SPI_set_master(ARG) MW_set_master(ARG)

Example 123: Setting up SPI on the National COP8SAA7

14.2.3 SPI_send_rec(0,4);

This function initiates the send/receive function. The following sections show
the device specific functions. The function starts at array index 0 of the receive
and transmit arrays and transfers information up to index 4. With SPI
information is received and transmitted at the same time.

On the Microchip PIC16C74
/*==
This function sends several data bytes from ARRRAY_SEND
and places the contents in the ARRAY_GET array. This
function uses polling. This function assumes that the
returned data is important and stores it in an array

ARGUMENTS:
ARG2 is a pointer to the array or data you wish to send
ARG3 n is the array index to start from
ARG4 offset is the array index to go up to
==*/

#define SPI_send_rec(ARG2, ARG3, ARG4) \

SPI_array_send(ARG2); \
SPI_send_rec2(ARG3, ARG4);

void SPI_send_rec2(n, offset){
 offset = offset+1;
 ARRAY_SEND = ARRAY_SEND + n;
 while(n != offset){
 SSPBUF = *ARRAY_SEND;//SPI_out[n]; // load SSPBUFF

// wait for the BF flag to indicate
// transmission is done

 while(SSPSTAT.BF == 0){
 }

Libraries

167

 *(ARRAY_GET+n) = SSPBUF; //store returned byte
 ARRAY_SEND = ARRAY_SEND + 1 ;
 n=n+1;
 }
}

Example 124: Initiating SPI send/receive on the Microchip PIC16C74

On the Motorola 68HC05

/*===
This function sends several data bytes from ARRRAY_SEND
and places the contents in the ARRAY_GET array. This
function uses polling. This function assumes that the
returned data is important and stores it in an array
ARGUMENTS:
n, ARG3 is the array index to start from
offset, ARG4 is the array index to go up to
ARG2 is the array you wish to send from
===*/

#define SIOP_send_rec(ARG2,ARG3,ARG4)\
 SPI_array_send(ARG2); \

SPI_send_rec2(ARG3, ARG4);

void SIOP_send_rec2(n, offset){
 offset = offset+1;
 ARRAY_SEND = ARRAY_SEND + n;

while(n != offset){

 SDR = *ARRAY_SEND;//
 SPI_out[n]; // load the SSPBUFF

 //SPIF flag indicates transmission is done
 while(SSR.SPIF == 0){
 }
 *(ARRAY_GET+n) = SDR; //store the returned byte
 ARRAY_SEND = ARRAY_SEND + 1 ;
 n=n+1;
 }
}
//note the use of an alias!
#define SPI_send_rec(ARG2,ARG3,ARG4) \
 SIOP_send_rec(ARG2,ARG3,ARG4)

Example 125: Initiating SPI send/receive on the Motorola 68HC705C8

On the National Semiconductor COP8

/*==

Libraries

168

This function sends several data bytes from ARRRAY_SEND
and places the contents in the ARRAY_GET array. This
function uses polling. This function assumes that the
returned data is important and stores it in an array
ARGUMENTS:
n is the array index to start from
offset is the array index to go up to
===*/
#define MW_send_rec(ARG2, ARG3, ARG4) \
 MW_array_send(ARG2); \
 MW_send_rec2(ARG3, ARG4);

void MW_send_rec2(n, offset){
 offset = offset+1;
 ARRAY_SEND = ARRAY_SEND + n;
 while(n != offset){
 SIOR = *ARRAY_SEND; // load the SIOR

 PSW.BUSY = 1;
 //BUSY flag to indicate transmission done

while(PSW.BUSY == 1){
// transmission is complete,

 }
 *(ARRAY_GET+n) = SIOR; //store returned byte
 ARRAY_SEND = ARRAY_SEND + 1 ;
 n=n+1;
 }
}
//note the use of an alias!
#define SPI_send_rec(ARG2, ARG3, ARG4) \
 MW_send_rec(ARG2, ARG3, ARG4)

Example 126: Initiating SPI send/receive on the National COP8SAA7

14.3 Device Driver Library Summary

As we can see from the individual functions, the library prevents the user from
having to know the specific hardware configuration of each processor. In
particular, the use of aliases allows the user to refer to the functions in the most
familiar way possible. One user might be most familiar with the Microchip PIC
and wish to refer to the functions as SPI. However, another user might be most
familiar with the National COP8 and wish to refer to the functions as MW
(Microwire).

169

15. Sample Project
This section covers a sample embedded system project. The project interfaces a
microcontroller with a SPI (UART) peripheral to a PC via the RS-232 port. The
most common and easiest technique for interfacing to a PC is to use the parallel
port where there are eight parallel bits for input and output. However, it is very
easy to damage the parallel port. On PCs with the parallel port on the
motherboard a damaged parallel port can require a new motherboard.

The serial port is more complicated but it is a much better tool for interfacing
to a desktop PC. It is very difficult to damage your computer by manipulating
the serial port. Also, the hardware is almost universally standard. Once you
build an embedded system with RS-232 support you can hook it up to a PC,
MAC, or another embedded system merely by changing the interface software

This project will introduce some key embedded system programming concepts
such as interrupts, registers, and peripherals.

15.1 Project Specifics

The project uses the portable device driver libraries discussed in Section 14,
Libraries. The specific hardware implementation will be on a Microchip PIC
16C74. The code is written using Borland C functions. If you do not use
Borland these functions are most likely supported by your favourite compiler,
where they may have slightly different names.

15.2 Project Foundations

The concepts and terminology necessary for this project are discussed in the
following sections.

15.2.1 Asynchronous

Devices that are synchronized in the electronics world use the same clock and
their timing is in synchronization with each other. Things that are asynchronous
have their own timing and clocks. In the world of serial communications it is
easy to tell if something in synchronous or not: if there is a clock line it is
synchronous, if there is no clock line it is asynchronous.

Sample Project

170

15.2.2 SCI

SCI is an asynchronous serial interface also know as UART (Universal
Asynchronous Receiver Transmitter). You may also see chips with a USART or
SPI with synchronous modes, this is still fundamentally the same as the SCI
interface but with the additional option of selecting a synchronous interface.
The timing of this signal is compatible with the RS-232 serial standard but the
electrical specifications are not compatible and will require a transceiver.

15.2.3 RS-232

Computers like to operate with parallel data. Serial transfers occur by
transfering parallel data to serial and then transfering it back into parallel data.
There is a component called a shift register that can perform these
transformations. The shift register uses an internally generated clock to shift
data in and out. It can shift in serial and shift out parallel or it can shift in
parallel and shift out serial data.

How do the reciever and the transmitter keep the same clock rate? The answer
is that they both agree ahead of time on a baud rate. The baud rate is the
number of times per second that the serial port changes its state. The receiver
and transmitter must use the same baud rate.

In order to explain how the reciever and transmitter stay synchronised we must
examine a typical RS-232 signal which represents the byte 01010011 in serial
format:

IDLE Start Bit 0 Bit 1 Bit 2 Bit 3 Bit 4 Bit 5 Bit 6 Bit 7 Stop
Figure 10: RS-232 signal

An idle serial line going from high to low is a signal to start receiving data. By
using the baud rate, the receiver knows exactly how long each bit will be, so it
can distinguish bits from each other. After 8 bits are received the line goes high
again and the receiver waits for the next start bit. After a byte has been received,
it can be taken from the serial port receive register and used by the computer.

The transmitter hardware handles the start and stop bits. Usually all we have to
do is load up the serial port transmit register and wait for an interrupt or use
device polling to determine when the transmission is complete.

Sample Project

171

15.3 Electrical Specifications

We mentioned that we need a transceiver to connect the PIC17C74 to an RS-
232 serial port. This is because the RS-232 standard specifies voltages that are
much different from the 0-5 volts typically used by microcontrollers. RS-232
uses what is called a push-pull system to transmit information. This push pull
ranges from sending a 1 (called a mark) as -3 to -25 volts and a 0 (called a
space) as +3 to +25 volts. These voltages allow for less distortion and longer
cable lengths.

15.4 PIC Implementation

The PIC 16C74 contains a hardware SPI port that lets us transmit
asynchronous serial data. We can be notified by interrupt or by polling when
the chip has finished sending or receiving a byte. We will examine the serial port
on the PC in detail.

15.4.1 Anatomy of a PC serial port

The concept of memory mapped peripherals on microcontrollers was discussed
in Section 2 Microcontroller Overview and Section 3 The Embedded
Environment. You will recall that the input and output devices are accessed as
memory locations. The PC works exactly the same way. It has four serial ports
known as:

NAME ADDRESS IRQ

COM1 0x03F8 4
COM2 0x02F8 3
COM3 0x03E8 4
COM4 0x02E8 3

Table 10: PC serial port addresses and interrupts

The next time your PC boots, examine the screen which contains the BIOS
information. The BIOS will tell you what serial ports you have and will display
their hex address. The column “IRQ” in Table 10 is the name of the interrupt
that is associated with the port.

Sample Project

172

15.4.2 A Note On Chip Sets

Depending on the vintage of your computer you may have any one of the
following UART chips:

CHIP COMMENTS

8250,8250A, 8250B These were the first UARTS.
16450, 165501,
6550A

These are what the majority of you will have. 16450 was
used in AT’s but is still quite common. The 16550 had
some problems and was replaced by the 16650A which
has a 16 byte FIFO

16650 The newest UART.
Table 11: UART chips

What is a FIFO?
A FIFO is a buffer. FIFO stands for First In First Out. A UART with a FIFO
can store data and therefore does not have to interrupt the CPU as often
because it can transfer many bytes at each interrupt service.

The variety of UART chips does not affect software development a great deal.
The UART chips are all supersets of previous UARTs. Unless you are
interested in super high performance communications, you can program these
chips in exactly the same way. Of course, if you run code for FIFO chips on
FIFOless chips the FIFO will not be working. For reasons of simplicity and
portability the code in this book will not use a FIFO.

15.4.3 IRQ

Everything you know about interrupts from embedded systems holds true for
larger computers. However, the memory address range is much bigger so
vectors will be several bytes.

The original PC was designed with 256 interrupt vectors for both hardware and
software. These were each 4 bytes in length for a total of 1024 (256 ' 4) bytes
in memory. As a whole this areas of memory is called the interrupt vector table.
For example, INT 0 uses memory locations 0x00000, 0x00001, 0x00002 and
0x00003 while INT8 uses the four bytes at 0x0020, 0x0021, 0x0022 and 0x0023.

Eight hardware interrupts beginning at INT8 are reserved. They are called
IRQ0-IRQ7, thus IRQ0 corresponds to INT8, IRQ1 to INT9 and so on.

Sample Project

173

Now that we know about the vector table we have to examine a few other
registers:

Address
BASE +

Read/Write Abbreviation Name

0 (DLAB = 0) W Transmit Holding Buffer
0 (DLAB = 0) R Receiver Buffer
0 (DLAB = 1) R/W Divisor Latch Low Byte
1 (DLAB = 0) R/W Divisor Latch High Byte
1 (DLAB = 1) R/W IER Interrupt Enable Register
2 R IIR Interrupt Identification

Register
2 W FCR FIFO Control Register
3 R/W LCR Line Control Register
4 R/W MCR Modem Control Register
5 R/W LSR Line Status Register
6 R MSR Modem Status Register
7 R/W Scratch Register

Table 12: COM port registers

The table depicts the registers associated with each COM port. The registers are
located at the base port address plus an offset. For example, the Line Status
Register for COM1 is at 0x03FD = (0x03F8 + 5). The DLAB bit is similar to a
paging bit, it allows the access of different registers at the same address. For
example, to access the IER set the DLAB bit and access BASE +1.

The following paragraphs describe each register:

Transmit Holding Buffer
Used to read a byte off the UART.

Receive Holding Buffer
A write to the receive holding buffer is used to transmit a byte on the UART.

Divisor Latch High/Low
These two registers allow us to select a baud rate. On the UART there is a
1.8432 Mhz crystal, which the UART divides by 16. If we used this frequency
the baud rate would be 115200 hertz. This rate is too fast to communicate with
300 BAUD modems. To get different speeds we can write a 16 bit number to

Sample Project

174

the Divisor Latch Low/High registers and the baud rate is changed to 115200
/ Divisor. For example, for a 2400 BAUD rate, we want the divisor to be 48
(115200/2400 = 48). We write 48 (or 0x30) into these two registers by placing
0x00 in the high byte register and 0x30 in the low byte register.

Interrupt Enable Register
Bit
Number

Description

BIT 0 Enable Received Data Available Interrupt If we set this bit, the UART
will issue an interrupt when received data is available.
NOTE: if you have a 16550 or newer UART this enables FIFO time
out interrupts

BIT 1 Enable Transmitter Holding Register Empty Interrupt. This will
interrupt when the transmit register is empty.

BIT 2 Enable Receiver Line Status Interrupt: Not used in this Project
BIT 3 Enable Modem Status Interrupt: Not used in this Project
BIT 4 RESERVED
BIT 5 RESERVED
BIT 6 RESERVED
BIT 7 RESERVED

Table 13: Interrupt enable register bits

Sample Project

175

Interrupt Identification Register
Bit Number Description

BIT 0 0
1

Interrupt Pending
No Interrupt Pending

BIT 1
0
1
0
1

BIT 2
0
0
1
1

Modem Status Interrupt
Transmitter Holding Register Empty Interrupt
Received Data Available Interrupt
Receiver Line Status Interrupt

BIT 3 0
1

Reserved on 8250 16450
16550 Time-out Interrupt Pending

BIT 4 Reserved
BIT 5 Reserved
BIT 6
0
0
1

BIT7
0
1
1

No FIFO
FIFO Enabled but Unusable
FIFO Enabled

Table 14: Interrupt identification register

FIFO Control Register
Bit Number Description

BIT 0 Enable FIFO - turn on the FIFO.
BIT 1 Clear Receive FIFO - erase the receive buffer
BIT 2 Clear Transmit FIFO - erase the Transmit Buffer
BIT 3 DMA mode select - Not used by this project
BIT 4 Reserved
BIT 5 Reserved
BIT 6
0
0
1
1

BIT 7
0
1
0
1

Interrupt Trigger Level - Only if chip has a FIFO
1 Byte
4 Bytes
8 Bytes
14 Bytes

Table 15: FIFO control register

Sample Project

176

Line Control Register
Bit Number Description

BIT 1
0
0
1
1

BIT 0
0
1
0
1

Word Length - select how many bits to send in each
message.
5 bits
6 bits
7 bits
8 bits

BIT 2
0
1

Length of Stop Bit
One Stop Bit
2 Stop bits for words of length 6,7,8 bits or 1.5 Stop
bits for word lengths of 5 bits

BIT 3
0
1
1
1
1

BIT 4
DC
0
1
0
1

BIT 5
DC
0
0
1
1

Parity Select
None
Odd
Even
High Sticky
Low Sticky

BIT 6 Set Break Enable
BIT 7 1

0
Divisor Latch Access Bit - DLAB Remember this guy
Access to Receive

Table 16: Line Control Register

Modem Control Register
Bit
Number

Description

BIT 0 Reserved
BIT 1 Reserved
BIT 2 Reserved
BIT 3 Loop Back Mode
BIT 4 Aux Output 2
BIT 5 Aux Input 1
BIT 6 Force Request to Send
BIT 7 Force Data Terminal Ready

Table 17: Modem Control Register

Sample Project

177

Line Status Register
Bit
Number

Description

BIT 0 Error in Received FIFO
BIT 1 Empty Data Holding Registers
BIT 2 Empty Transmitter Holding register
BIT 3 Break Interrupt
BIT 4 Framing Error
BIT 5 Parity Error
BIT 6 Overrun Error
BIT 7 Data Ready

Table 18: Line Status Register

Modem Status Register
Bit
Number

Description

BIT 0 Carrier Detect
BIT 1 Ring Indicator
BIT 2 Data Set Ready
BIT 3 Clear To Send
BIT 4 Delta Data Carrier Detect
BIT 5 Trailing Edge Ring Indicator
BIT 6 Delta Data Set Ready
BIT 7 Delta Clear to Send

Table 19: Modem Status Register

15.5 Programming Interrupts

The serial port has two associated IRQs, IRQ3 and IRQ4. To refer to these in a
program we must refer to them by interrupt vector table entry: 0x0B for IRQ3
and 0x0C for IRQ4. (IRQ0 is located at 0x08). There are two useful macros
provided by Borland called enable() and disable(). These functions
enable and disable all interrupts which is useful for when we are carrying out
interrupt related programming and do not wish our program to be interrupted
by other interrupt service requests.

Sample Project

178

Good programming practice dictates that we return the contents of the vector
location when our program is finished. If we do not, programs which use the
serial port may not run because they will be directed to our interrupt service
routine.

Programming interrupts on a PC is much like programming them on an
embedded system. There is a definite series of steps one must use:

!!!! Change the vector location

First declare a pointer to an interrupt function:

void interrupt far (*old_function)();

Store the old vector address for our interrupt, because we must restore this
when we are done. For example if we are using COM1, IRQ_location will
be 0x0C.

old_function = getvect(IRQ_location);
Now we can place the location of our interrupt service routine in the vector
table:

setvect(IRQ_location, our_int_serv);
If we were using COM1, IRQ_location is 0x0C and our_int_serv is
the name of the function that we have written for interrupt service.

Finally we reset the old vector to the table:
setvect(IRQ_location, old_function);

"""" Unmask the Interrupt
The interrupt is unmasked by clearing the bit corresponding to our IRQ in
location 0x021.

//leave other bits alone and change our bit
outportb(0x021, inportb(0x021 & ~IRQ_location);

%%%% Write an Interrupt Service Routine
Now we can write our ISR. The routine can perform any action we wish. For
example, the computer can log a time, log data, or emit a beep. The only
condition is that we must tell the computer that the interrupt has been
processed. This is easily done using the following call:

outportb(0x20, 0x20);

Sample Project

179

//this tells the computer that the interrupt has been
//processed

A general format for ISR is as follows:

1) Disable any further interrupts with disable();

2) Do what ever is required

3) Indicate that the interrupt was processed to the PC

4) Enable interrupts with enable();

5) Return the interrupt mask to its original configuration (set the bit
corresponding to our interrupt).

NOTE
You may encounter problems attempting to perform some operations in an interrupt
service routine. For instance if you try to write data to disk, the system may hang
because the disk drive is trying to use an interrupt but is unable to do so.

15.6 The Sample Project Code

The following is a simple implementation of a serial port connection, the PC
sends the message Hello Mr. PIC! and the PIC16C74 sends the message
Hello Mr. PC!. On both the PIC16C74 and the PC the string is stored in
an array. The PIC16C74 will initiate the transfer. The PIC will take advantage of
a portable device driver library. Both the PIC and the PC are configured to run
at 9600 baud with 8 bits of data, no parity, and 1 stop bit.

15.6.1 PIC16C74 Code

#pragma option v;
#define NOLONG

//header files contain memory and port declarations,
//and device library functions

#include "16c74.h"
#include "port.mpc"
#include "MPCsci2.h"

const char cout[] = "Hello, Mr. PC!";
char cin[15];

void main(void){

Sample Project

180

 SCI_array_get(cin); // The array to store the data
 SCI_setup(0x019); // Set up the SCI port on the PIC
 SCI_string_int(cout); // Transmit a string using int.

 while(1){
 }
}

void __INT(void){
 INTCON.GIE = 0;
 if(PIR1.TXIF == 1){
 SCI_int_svcst(); // macro from the device library
 }
 RestoreContext;
 return;
}

Example 127: Serial port connection example for the PIC16C74

15.6.2 PC Code
#include <dos.h>
#include <stdio.h>
#include <conio.h>
#include <string.h>
#define PORT1 0x03f8 //we want to use COM 1
#define COM1 0x03f8
#define IRQ 0x0C //the INT for COM1 (IRQ3)

unsigned char chout[] = "Hello Mr. PIC";
unsigned char chin[15]; //store the received message here

void interrupt far (*oldfunc)(...); // store the old ISR

int gn; // this is a global counter, to tell us how many
 //times the interrupt has been serviced
int int_done = 0;

// our interrupt service routine
void interrupt int_svc(...){
 unsigned char c;
 disable(); //turn off interrupts
 // tell the PC that the interrupt has been serviced

 outportb(0x20,0x20);
 //if the first bit of the LSR is set, it means
 //that the UART has received information

 do { c = inportb(PORT1 + 5);
 if (c & 1){ //so we get it!
 chin[gn] = inportb(PORT1);
 printf("%c", chin[gn]); // print message

Sample Project

181

 }
 }while (c == 1);
 int_done = 1;
 gn = gn + 1;
 enable(); // turn back on the interrupts
}

int main(void){
 int n = 0;
 outportb(PORT1 + 1 , 0); //Turn off COM1 interrupts
 disable(); //Borland macro to turn off all interrupts
 oldfunc = getvect(IRQ); //store old interrupt vector
 setvect(IRQ, int_svc); // Set new interrupt vector

 //We must now configure the serial port, refer to the

//charts at the beginning of the book to determine
//what is being set. We will configure for 9600 baud,
//8 bit words, 1 stop bit, and no parity bit. The
//FIFO (if it exists) is set to one byte.

 //Communication Settings
 outportb(PORT1 + 3 , 0x80); // SET DLAB ON
 outportb(PORT1 + 0 , 0x0C); // Set Baud rate Low Byte
 outportb(PORT1 + 1 , 0x00); // Set Baud rate Hi Byte
 outportb(PORT1 + 3, 0x00); // The DLAB is zero

 // 8 Bits, No Parity, 1 Stop Bit
 outportb(PORT1 + 3 , 0x03);
 outportb(PORT1 + 2 , 0x07); // FIFO Control Register
 outportb(PORT1 + 4 , 0x0B); // Turn on DTR, RTS, OUT2

 // Interrupt when data received
 outportb(PORT1 + 1 , 0x01);

 // Set Programmable Interrupt Controller,
 // i.e. unmask our interrupt
 outportb(0x21,(inportb(0x21) & 0xEf));

 enable(); //Borland macro to turn on interrupts
 while(n<=15){
 outportb(PORT1, chout[n]);
 while(int_done == 0)
 {}
 //output our message after receiving a byte
 outportb(PORT1, chout[n]);
 int_done = 0;
 n=n+1;
 }
 disable();
 //set mask bit
 outportb(0x21, (inportb(0x21) | 0x10));

Sample Project

182

 setvect(IRQ,oldfunc); //restore interrupt setting
 enable();
 printf("\nThe received string is \n %c\n" , chin);
 return 0;
}

Example 128: Serial port connection example for the PC

Now all that we require is the hardware necessary to turn the electrical signals
from the PIC into RS-232 levels. This is quite easy and there are a number of
chips that can turn 5 volt TTL levels into RS-232 levels off of a standard 5 volt
power supply. They use a “bucket brigade” of capacitors to build the needed
potential difference. This project uses a MAX232A, but you can use any of the
many alternatives as long as you follow the schematic:

U1

MAX232A

1
3
4
5

16

15

2
6

12
9

11
10

13
8

14
7

C1+
C1-
C2+
C2-

VCC

GNDV+
V-

R1OUT
R2OUT

T1IN
T2IN

R1IN
R2IN

T1OUT
T2OUT

C5

0.1

C2

0.1

VCC
R1
10

P1 CONNECTOR DB9

5 9 4 8 3 7 2 6 1

C3

0.1

TX - to MCU

C1

0.1

RX - to MCU

C4
0.1

Figure 11: Project schematic

It is useful to examine the pin outs of the RS232 port:

Sample Project

183

CONNECTOR PIN # NAME

DB9 DB25
3 2 TD -Transmit Data
2 3 RD - Receive Data
5 7 SG - Signal Ground
4 20 DTR - Data Terminal Ready
6 6 DSR - Data Set Ready
1 8 CD - Carrier Detect
7 4 RTS - Request to Send
8 5 CTS - Clear to Send

Table 20: Pin outs on the RS232 port

There are two types of serial connectors: the DB9 has 9 pins and the DB25 has
25 pins. The pins are usually marked on the connector so it is easily determined
which pins are which. The interface to the microcontroller can be thought of as
a DCE, or Data Communications Equipment, and therefore needs only a
straight through cable.

The RS-232 protocol defines two types of devices, DTE, Data Terminal
Equipment and DCE, Data Communication Equipment. DTE is generally used
with PCs and DCE is usually found on modems. The pins, DTR, DSR, CD,
RTS, and CTS are only useful with a modem, i.e. connecting a DTE to a DCE.
We will just loop these pins back and trick the PC into thinking it is talking to a
modem. This way data can flow freely on the TX and RX pins.

NOTE
Ensure that you connect the ground on both parts of the circuit together or it will not
work because the electrical signals will not be able to complete a circuit.

You can make many interesting and fun projects using the serial port. The
project described in this section can be very useful even if you do not have any
micro controllers to interface with. It is very useful for learning key embedded
programming concepts like interrupts, registers, serial communications, and
timing. You can easily hook up two PCs to transfer files and run dumb
terminals. If you connect two PC’s together remember, that you are connecting
two DTEs, which will require a null modem cable.

185

16. C Precedence Rules
Expression type Operators

Primary Identifier
 Constant
 String
 Expression
Postfix a[b] f() a.b
 a-- a++
Unary ++a --a
 sizeof a sizeof(a)
 &a *a ~a
 !a +a -a
Cast (type) a
Multiplicative a * b a / b a % b
Additive a + b a - b
Shift a << b a >> b
Relational a < b a > b
 a <= b a >= b
Equality a == b a != b
Bit AND a&b
Bit EOR a ^ b
Bit OR a | b
Logical AND a && b
Logical OR a || b
Conditional a ? b : c
Assignment a = b
 a += b a -= b
 a *= b a /= b a %= b
 a &= b a ^= b a |= b
 a <<= b a >>= b
Comma a,b

Table 21: Rules of operator precedence

Operations higher up in the table have precedence over those lower. Those at
the same level execute in the order they appear. The optimizer often regroups
sub-expressions that are both associative and commutative in order to improve
the efficiency of generated code. The order of any side-effects, such as

C Precedence Rules

186

assignment, or action taken by a function call, is also subject to alteration by the
compiler.

187

17. ASCII Chart
HEX ASCII HEX ASCII HEX ASCII HEX ASCII

00 NUL 20 SP 40 @ 60 `
01 SOH 21 ! 41 A 61 a
02 STX 22 “ 42 B 62 b
03 ETX 23 # 43 C 63 c
04 EOT 24 $ 44 D 64 d
05 ENQ 25 % 45 E 65 e
06 ACK 26 & 46 F 66 f
07 BEL 27 ‘ 47 G 67 g
08 BS 28 (48 H 68 h
09 HT 29) 49 I 69 i
0A LF 2A * 4A J 6A j
0B VT 2B + 4B K 6B k
0C FF 2C , 4C L 6C l
0D CR 2D - 4D M 6D m
0E SO 2E . 4E N 6E n
0F SI 2F / 4F O 6F o
10 DLE 30 0 50 P 70 p
11 DC1 31 1 51 Q 71 q
12 DC2 32 2 52 R 72 r
13 DC3 33 3 53 S 73 s
14 DC4 34 4 54 T 74 t
15 NAK 35 5 55 U 75 u
16 SYN 36 6 56 V 76 v
17 ETB 37 7 57 W 77 w
18 CAN 38 8 58 X 78 x
19 EM 39 9 59 Y 79 y
1A SUB 3A : 5A Z 7A z
1B ESC 3B ; 5B [7B {
1C FS 3C < 5C \ 7C |
1D GS 3D = 5D] 7D }
1E RS 3E > 5E ^ 7E ~
1F US 3F ? 5F _ 7F DEL

Table 22: ASCII characters

189

18. Glossary
accumulator

Also AC, ACC. A register which holds the resulting values of ALU operations.

a/d
Analog to digital.

address
A number which indicates the storage location of data in memory.

addressing mode
The syntax used to describe a memory location to the CPU.

algorithm
A solution to a problem.

ALU
Arithmetic Logic Unit. Performs basic mathematical manipulations such as add, subtract,
complement, negate, AND, OR.

analog
A continuous range of voltage values.

AND
Logical operation where the result is 1 iff ANDed terms both have the value 1.

ANSI C
American National Standards Institute standards for C language.

array
A group of data elements indexed and stored in contiguous memory.

ASCII
The American Standard Code for Information Interchange is used to represent characters.

assembler
Program that converts a machine’s assembly language into object code.

assembly language
Mnemonic form of a specific machine language.

assignment
Store a value in a variable.

Glossary

190

asynchronous
Unclocked or not synchronous with CPU timing.

bank
A logical unit of memory (64k).

baud
The number of bits transmitted per second

binary
Base 2 number system which contains only the numbers 0 and 1.

bit
Binary digit which is either 0 or 1.

bit field
A group of contiguous bits considered as a unit.

block
Any section of C code enclosed by braces {}.

breakpoint
A set location to stop executing program code. Breakpoints are used in debugging
programs.

bus
Path for signals between components of a computer system .

byte
Eight bits.

C
High level programming language.

cast
Also Coerce. Convert a variable from one type to another.

checksum
A value which is the result of adding specific binary values. A checksum is often used to
verify the integrity of a sequence of binary numbers.

clear
Set a bit to 0.

clock
Fixed-frequency signal that triggers or synchronizes CPU operation and events. A clock has
a frequency which describes its rate of oscillation in MHz.

Glossary

191

comment
Non-executed text included in a program in order to explain what the executable
statements in the program are doing.

compiler
Program that converts a high level language to object code.

computer operating properly (COP)

control statement
Statement which controls the execution of other statements based on conditions provided
by the programmer.

CPU
Central Processing Unit. It fetches, decodes and executes instructions.

cross assembler
An assembler that runs on one type of computer and assembles the source code for a
different target computer. For example, an assembler that runs on a 80486 and generates
object code for Motorola’s 68HC05.

cross compiler
A compiler that runs on one type of computer and compiles source code for a different
target computer. For example, a compiler that runs on a 80486 and generates object code
for Motorola’s 68HC05.

crystal
A quartz crystal which provides a frequency for clock timing.

debugger
A program which helps with system debugging where program errors are found and
repaired. Debuggers support such features as breakpoints, dumping, memory modify.

decision statement
Statement which controls the program flow based on the result of testing a condition.

declaration
A specification of the type, name and possibly the value of a variable.

decoder
The unit which decodes bits into mutually exclusive outputs.

dereference
Also *. Access the value pointed to by a pointer.

directive
A command given to the preprocessor which begins with a #.

Glossary

192

EEPROM
Electrically erasable programmable read only memory.

embedded
Fixed within a surrounding system or unit.

escape character
The / character in C can be used as an escape character.

executable
A file which contains code which can be run on a specific target device.

fixed point
Integer representation where the decimal is in a fixed position.

floating point
The integer representation of decimal numbers using a mantissa field and an exponent field.

global variable
Variable that can be read or modified by any part of a program.

header file
Source code which is inserted into another source file using the #include preprocessor
directive.

hexadecimal
Also Hex. Base 16 numbering system which uses the digits 0-9 and the letters A-F.

include file
A file which is included by the preprocessor due to the use of the #include directive.

index register
Also X. Register used to hold an increment which can be added to an address when indirect
addressing is used.

integer
A number with no decimal, a whole number.

interrupt
A signal sent to the CPU to request service. The CPU saves its state and branches to a
routine to handle the interrupt. After the interrupt has been handled the saved state is
restored.

library
Collection of functions which are available for use by other programs.

Glossary

193

linker
A program which combines separate object files together in order to create an executable
file.

local variable
Variable that can only be used by a specific module or modules in a program.

logical operator
Operators which perform logical operations on their operands. For example, !, &&, ||.

machine language
Binary code instructions which can be understood by a specific CPU.

macro
Source code which is given a unique label. If the compiler sees the label in following source
code it will replace it with the body of the macro.

mask
A group of bits designed to set or clear specific locations in another grout of bits when
used with a logical operator.

maskable interrupt
Interrupts which software can activate and deactivate.

memory mapped
A virtual address or device is associated with an actual address in memory.

microcontroller
Also MCU. Single chip which controls another device and contains a CPU, memory and
I/O ability. A type of embedded controller.

microprocessor
Also µP. A single chip CPU.

module
A logically united part of a program which is in the same source code file.

nibble
A four bit binary number.

NOP
No operation. An instruction which is used to create a delay.

not
Logical negation. A 0 becomes a 1 and a 1 becomes a 0.

Glossary

194

object code
Machine language instructions represented by binary numbers not in executable form.
Object files are linked together to produce executable files.

octal
Base 8 number system.

operator
A symbol which represents an operation to be performed on operands. For example, +, *,
/.

or
A Boolean operation which yields 1 if any of its operands is a 1.

paging
A page is a logical block of memory. A paged memory system uses a page address and a
displacement address to refer to a specific memory location.

parameter
A variable used to pass information to and from a function.

pointer
An address of a specific object in memory which is used to refer to that object.

port
A physical I/O connection.

preprocessor
A program which prepares data for processing by the compiler.

program
Collection of instructions for a computer written in a programming language which
implement an algorithm.

program counter
Also PC. A register which holds the address of the next instruction to be executed. The
program counter is incremented after each instruction is fetched.

PROM
Programmable read-only memory. ROM that can be programmed.

RAM
Random Access Memory. RAM is read/write memory.

real number
A number which can have a decimal place.

Glossary

195

real time
A system which reacts at a speed commensurate with the time an actual event occurs.

recursive
A function which calls itself.

register
A byte or word of memory which can be directly accessed by the processor. Registers are
accessed more quickly than other memory locations. Some registers are CPU registers
which means that they exist within the CPU.

reset
To return to a selected beginning point.

return
An instruction which terminates a function.

ROM
Read Only Memory.

ROMable
Code which will execute when placed in ROM memory.

scope
A variable’s scope is the areas of a program in which it can be accessed.

sequencer
A module which provides the next program address to memory.

serial
Sequential transmission of one bit at a time using a single line.

set
Give a bit the value 1.

shift
Move the contents of a register to the left or right.

side-effect
An unintentional change to a variable.

simulator
A program which has the same input and output behaviour as a specific device. Timing
considerations can not be tested with a simulator.

source code
A program in assembly language or a high level language before it passes through an
assembler or compiler.

Glossary

196

stack
A section of RAM which is used to store temporary data. A stack is a last-in-first-out
(LIFO) structure which contains information which is saved and restored.

stack pointer
A register which contains the address of the top of the stack.

static
A variable that is stored in a reserved area of RAM instead of in the stack. The area
reserved cannot be used by other variables.

synchronous
Operations which are controlled by a clock pulse.

timer

UART
Universal asynchronous receiver/transmitter. A serial-to-parallel and parallel-to-serial
converter.

USART
Universal Synchronous/Asynchronous Receiver/Transmitter. A chip which handles
synchronous data communications.

variable
A symbolically named address or range of addresses which can be assigned values.

void
A C data type.

word
A 16 bit binary number.

197

19. Bibliography

Oualline, Steve. Practical C Programming. Sebastopol, CA: O’Reilly & Associates, 1991.

Index

198

20. Index

!

! · See not operator
!= · See inequality operator

#define · 57
#include · 57
#pragma · 58

&

& operator
precedence · 185

&& · See and operator

*

* operator
precedence · 185

{

{ · See braces

<

< · See less-than operator
<= · See less-than-or-equal

=

= · See assignment operator
== · See equality operator

>

> · See greater-than operator
>= · See greater-than-or-equal

A

accumulator · 14
algorithm · 83
ALU · 13
and operator · 93
arithmetic logic unit · See ALU
arithmetic operators · 88
ASCII · 71, 76
assembler · 47
assembly language · 46
assignment operator · 87
assignment statement · 60
asynchronous · 16

B

baud rate · 16
binary · 44
binary notation · 79
binary operators · 85
bits · 45
block · 69
braces · 59, 69, 70, 102
bus · 6, 19

Index

199

C

central processing unit · See CPU
character · 71
character data type · 76

assigning · 76
clock · 11
collating sequence · 77
comma operator · 87
comments · 56

C++ · 56
compiler · 49, 50, 66, 69

cross compiler · 51
constant · 67

defining with #define · 57
control statement · 60
control structure · 99
CPU · 6, 19
cross compiler · See compiler

D

data abstraction · 75, 113
data type · 71

character · 76
double · See double data type
float · 81
function · 75
integer · See integer data type
long · See long data type
long double · See long double data type
modifiers · See modifiers
parameter · 76
short · See short data type

dead code · 94
decimal notation · 79
decoder · 13
decrement

operator · 89
postfix · 89
prefix · 90

development platform · 5
directives · See preprocessor directives
division

integer · 88

operator · 88
double data type · 81
double underscore · 1

E

else statement · 101
matching with if · 102

emulator · 51
equality operator · 92
equality operators · 91
escape sequence · 77
expression

evaluation · 84
expressions · 84

compared to statements · 84

F

floating point numbers · 80
function

body · 60
header · 60
identifier · 68
prototype · 59

functions · 58, 65

G

GIE · 18
global interrrupt enable · See GIE
greater-than operator · 93
greater-than-or-equal · 93

H

Harvard architecture · 7
header file · 57, 81
hexadecimal · 46
hexadecimal notation · 79

Index

200

I

identifer · See also variable
identifier

and significant characters · 67
constant · 67
memory allocation · 66
naming rules · 66

identifiers · 65
if · 61
if statement · 100

matching with else · 102
increment · 83

operator · 89
postfix · 89
prefix · 90

index register · 14
inequality operator · 92
initialization code · 111
integer data type · 71, 78

assigning to a float · 81
integer variables · 80
interrupt · 6, 18

maskable · 18
non-maskable · 18

intger data type
sign bit · 78

K

keywords · 66

L

LED · 55
less-than operator · 93
less-than-or-equal · 93
linker · 50
local variables · See variables, local
logical operators · 91
long data type · 72, 79
long double data type · 81
loop · 61, 92

infinate · 61

M

machine code · 73
machine language · 46, 50
main() · 58
maskable interrupt · See interrupt
memory

allocation for variables · 73
microcontroller · 5

standard · 2
microprocessor · 5
modifiers · 80
module · 57
modulus

operator · 88

N

nesting
if statements · 101

not operator · 93

O

octal notation · 79
operator

binding · 85
precedence · 86

operator precedence · 185
operators · 83

arithmetic · 88
binary · 85
postfix · 85
prefix · 85
trinary · 86
unary · 85

or operator · 93

P

parameter · 59
parameters · 76

Index

201

platform
development · 5
target · 6

port · 16, 58
precedence

of operators · 86
preprocessor · 50
preprocessor directives · 56, 65
processor clock · See clock
processor oscillator · See clock
programmer · 52
prototype · See function prototype

R

RAM · 6, 67, 68, 73
random access memory · See RAM
read only memory · See ROM
readability

improving · 56, 57
real numbers · See floating point
register · 13. See also individual registers
relational operators · 91
reserved word · 58
ROM · 6, 68

S

scope · 73
local · 74
overlap · 74

semicolon · 69
sequencer · 13
short data type · 78
short-circuit evaluation · 94
side-effects · 90
sign bit · 78, 80
significant characters · 67
simulator · 51
stack pointer · 14
standard

microcontroller · 2
statement

terminator · 69

stdio library · 55
symbol table · 66, 73
synchronous · 16

T

target platform · 6
timer · 6, 17
trinary operator · 86
typographical conventions

courier font · 1
italic courier font · 1

typographical conventions · 1
bold · 1

U

unary operators · 85

V

varaible
initializing · 72
scope · See scope

variable · 65
declarations · 73
external · 74
global · 74
local · 74
multivariable declaration · 72

variables
local · 68

vector · See also interrupt
visibility · See scope
void · 59, 75, 84
Von Neumann architecture · 7

W

watchdog timer · See COP
while · 61, 70
white space · 69

Index

202

COP8C C6805 C6808 SXC Z8C C38 MPC

Code Development Systems
Byte Craft Limited specializes in embedded systems software development tools for single-chip microcontrollers. Byte
Craft Limited was the first company to develop a C compiler for the Motorola 68HC05 and the National Semiconductor
COP8™. Our compilers and related development tools are now being used by a wide range of design engineers and
manufacturers in areas of Commerce, Industry, Education, and Government.

! Supports all Microchip PIC 12x/14x/16x/17x
families, 8K and Flash parts

! Named address space supports variable grouping
! Works with Microchip's PICMASTER, ICE 2000 emulator,

MPLAB-SIM simulator, Advanced Transdata, Tech-Tools
Mathias, Clearview, iSystem

! Supports setting configuration fuses through C
! Demo at www.bytecraft.com/impc.html

CATALOG

! Supports the Feature Family, and SGR/SGE
! Supports LOCAL memory reuse, SPECIAL memory

through software
! Supports SREG memory management
! Support for symbolic debugging with emulators

including MetaLink
! Supports setting configuration fuses through C
! Demo at www.bytecraft.com/icop.html

! Supports all 68HC05 variants
! Supports LOCAL memory reuse, SPECIAL memory

through software
! Support for symbolic debugging with many emulators

including MMDS05, MMEVS, and Metalink iceMASTER
! E6805 available to support Motorola
! Supports setting Mask Option Register through C
! Demo at www.bytecraft.com/i05.html

EVM, EVS

! Supports all MELPS740 variants, including 7600 series,
M509xx, M371xx, M374xx and M38xxx

! Supports MUL, 7600
! Supports processor-specific instructions BRK, CLC, CLD,

CLI, CLT, CLV, NOP, PHA, PLA, PLP, ROL, ROR, RRF, SEC,
SED, SEI, SET, STP, WIT

! Allows direct access to AC, X, Y, CC registers
! Demo at www.bytecraft.com/ic38.html

! Supports all 68HC08 variants
! Supports LOCAL memory reuse, SPECIAL memory

through software
! Supports 6808 extended addressing, instructions
! Support for symbolic debugging with many emulators

including Motorola MMDS08 and MMEVS08, and the
Ashling CT68HC08

! Supports setting Mask Option Register through C
! Demo at www.bytecraft.com/i08.html

! Supports all SX variants, including SX48 and SX52
! Supports LOCAL memory reuse, SPECIAL memory

through software
! Supports virtual device drivers within C
! Data types include bit, bits, char, short, int,

int8/16/24/32, long, float and fixed point
! Support for assembly source-level debugging with

Parallax SX-Key
! Demo at www.bytecraft.com/isxc.html

! Supports all Zilog Z8 and Z8+ variants
! Supports instruction set variants C94, C95, HALT, MUL,

STOP, WAIT
! Supports processor-specific instructions DI, EI, HALT,

NOP, RCF, SCF, STOP, WAIT, WDT, WDH
! Generates information required for source-level

debugging
! Demo at www.bytecraft.com/iz8c.html

Features
Both DOS and Windows versions include an Integrated
Development Environment. The DOS IDE provides
source-level error reporting. The Windows IDE maintains
projects, gives access to online help, and can control third-
party tools.

The compilers generate tight, fast, and efficient
executables, as well as listing files that match the original C
source to the code generated. Several optional reports
(symbol information, nesting level, register contents) can
appear in the listing file.

Header files describe each processor derivative.
#pragma statements configure the compiler for available
interrupts, memory resources, ports, and configuration
registers. Convenient #defines make your programs
portable between members of a processor family.

C extensions include: bit and bits data types, binary
constants, case statement extensions, direct register access
in C, embedded assembly, initialization control, direct
variable placement, interrupt support in C.

Two forms of linking are available: Absolute Code Mode
links library modules into the executable during
compilation. The BClink linker uses a more traditional
linker command file and object files. Either route provides
optimization at final code generation.

You can include Macro Assembler instructions within C
code, or as separate source files. Embedded assembly code
can call C functions and access C variables directly. You
can also pass arguments to and from assembly code.

Availability
Byte Craft Limited products are available world-wide, both
directly from Byte Craft Limited and through our
distributors.

For more information, see www.bytecraft.com.

Upgrade Policy
Registered customers receive free upgrades and
technical support for the first year. All other registered
users may purchase major releases for a fraction of the
full cost. Along with our version upgrades, Byte Craft
Limited remains committed to maintaining a high level of
technical support.

Demonstration versions of the Code
Development System are available.

Byte Craft Limited
A2-490 Dutton Drive
Waterloo, Ontario
Canada • N2L 6H7

 519-888-6911
 519-746-6751

phone:
fax:

!

! Accepts fuzzy logic rules, membership functions and
consequence functions

! Standard defuzzification methods provided; add new
defuzzification methods easily

! Includes plots of membership and consequence
functions in generated comments

! Works with all Code Development Systems

Transforms fuzzy logic to plain C; call between C and
fuzzy functions

05/2001

in
fo

@
by

te
cr

af
t.c

om
ww

w.
by

te
cr

af
t.c

om

C38

C6805 Z8C

Fuzz-C™

MPC C6808

COP8Cfor DOS
or Windows SXCfor DOS

or Windows

About Byte Craft Limited

Byte Craft Limited is a software
development company specializing in
embedded systems software
development tools for single-chip
microcomputers. We provide
innovative solutions for developers,
consultants and manufacturers around
the world. Our main products are C
cross-compilers targeted to a variety of
microcontroller families.

ox40;
gs&0x20)
table();

02A4 A
02A6 B
02A9 C

Byte Craft Limited
A2-490 Dutton Drive
Waterloo, Ontario, Canada
N2L 6H7
phone: +1 519.888.6911
fax : +1 519.746.6751
<info@bytecraft.com>

www.bytecraft.com

	First Steps with Embedded Systems
	Introduction
	Typographical Conventions
	Explaining the Microcontroller
	Book Contents

	Microcontroller Overview
	What is a Microcontroller?
	The Microcontroller in a System
	Architecture
	Von Neumann
	Von Neumann Memory Map
	Harvard
	Harvard Memory Map
	The Central Processing Unit
	Central Processing Unit
	ROM
	RAM
	I/O Ports
	Timer
	Interrupt Circuitry
	Buses

	Sample Microcontroller Configurations
	Motorola MC68HC705C8
	National Semiconductor COP8SAA7
	Microchip PIC16C54
	Microchip PIC16C74

	The Embedded Environment
	The Embedded Difference
	Fabrication Techniques
	Memory Addressing and Types
	RAM
	ROM
	PROM
	EPROM
	EEPROM
	Flash Memory
	Registers
	Scratch Pad

	Interrupts
	Interrupt Handling
	Synchronous and Asynchronous Interrupt Acknowledgement
	Servicing Interrupts
	Interrupt Detection
	Executing Interrupt Handlers
	Multiple Interrupts

	Specific Interrupts
	RESET
	Software Interrupt/Trap
	IRQ
	TIMER

	Power
	Brownout
	Halt/Idle

	Input and Output
	Ports
	Serial Input and Output

	Analog to Digital Conversion
	Miscellaneous
	Digital Signal Processor
	Clock Monitor

	Devices
	Mask ROM
	Windowed Parts
	OTP

	Programming Fundamentals
	What is a Program?
	Number Systems
	Binary Information
	Memory Addressing
	Machine Language
	Assembly Language
	Assembler

	Instruction Sets
	The Development of Programming Languages
	Compilers
	The Preprocessor
	The Compiler
	The Linker

	Cross Development
	Cross compiler
	Cross development tools
	Embedded Development Cycle

	First Look at a C Program
	Program Comments
	Preprocessor directives
	C Functions
	The main() function
	Calling a Function

	The Function Body
	The Assignment Statement
	Control statements
	Calling Functions

	The Embedded Difference
	Device Knowledge
	Special Data Types and Data Access
	Program Flow
	Combining C and Assembly Language
	Mechanical Knowledge

	C Program Structure
	C Preprocessor Directives
	Identifier Declaration
	Identifiers in Memory
	Identifier names
	Variable Data Identifiers
	Constant Data Identifiers
	Function Identifiers

	Statements
	The Semicolon Statement Terminator
	Combining Statements in a Block

	Basic Data Types
	The ASCII Character Set
	Data types
	Variable Data Types
	Variable Data Type Memory Allocation
	Variable Scope
	Global Scope
	Local Scope
	Declaring Two Variables with the Same Name
	Why Scope is Important

	Function Data Types
	Function Parameter data types

	The Character Data Type
	Assigning a character value
	ASCII Character Arrangement
	Numeric Characters
	Escape Sequences

	Integer Data Types
	Integer Sign Bit
	The short Data Type
	The long Data type
	Different Notations

	Data Type Modifiers
	Signed and Unsigned
	Other Data Type Modifiers

	Real Numbers
	The float Data Type
	The double and long double Types
	Assigning an Integer to a float

	Operators and Expressions
	Operators
	C Expressions
	Binding
	Unary Operators
	Binary Operators
	Trinary Operator
	Operator Precedence
	The = Operator

	Arithmetic Operators
	Increment and Decrement Operators

	Assignment Operators
	Comparison Operators
	Expressing True and False
	The Equality Operators
	Relational Operators
	Logical Operators

	Bit Level Operators
	Bit Logical Operators
	Bit shift operators

	Control Structures
	Conditional Expressions
	Decision Structures
	if and else Statements
	Nested if statements
	Matching else and if
	switch and case
	Execution within a switch
	Fall-through execution
	The default case
	The goto Statement
	Comparing goto and switch..case

	Looping Structures
	Control expression
	The while loop
	The do loop
	The for loop
	How the for loop works

	Exiting a Loop
	The break Statement
	The continue Statement

	Functions
	main()
	Executing a Function
	Calling a Function

	Function Prototype Declarations
	Defining the Function Interface
	Calling Functions in Other Files
	Function Type, Name and Parameter List
	Functions and void

	Function Definitions
	Statement Block
	Variable Declarations in Function Definitions

	Function Parameters
	Passing Data by Value
	Passing Data by Reference
	Functions Without Parameters

	Complex Data Types
	Pointers
	Declaring a Pointer
	Pointer Operators
	Pointer Pitfalls

	Arrays
	Accessing Array Elements
	Multidimensional Arrays
	Array Operations and Pointer Arithmetic
	Arrays of Pointers

	User Defined Data Types
	Using typedef to Define New Data Types
	Using types defined with typedef

	Enumerated Types
	Enumerated Type Elements
	Enumerated Type Value Checks
	Specifying Values for Enumerated Elements

	Structures
	The structure tag
	Using typedef to Define a Structure
	Accessing Structure Members
	Indicating a Field with the Dot Operator
	Indicating a Field with the Structure Pointer
	Bit Fields in Structures
	Storing bit fields in memory
	The behaviour of bit fields

	Unions
	Retrieving a Union Element
	Using Unions with Incompatible Variables

	Storage and Data Type Modifiers
	Storage Class Modifiers
	External linkage
	Internal linkage
	No linkage
	The extern Modifier
	Global Variables and extern
	The static Modifier
	The visibility of static variables
	The register Modifier
	The auto Modifier

	Data Type Modifiers
	Value Constancy Modifiers: const and volatile
	Allowable Values Modifiers: signed and unsigned
	Size Modifiers: short and long
	Pointer Size Modifiers: near and far
	Using near and far pointers
	Default pointer type

	The C Preprocessor
	Preprocessor Directive Syntax
	White Space in the Preprocessor
	File Inclusion
	File Inclusion Searches

	Defining Symbolic Constants
	The #undef directive
	Defining “empty” symbols

	Defining Macros
	Macro Expansion
	# and ## Operators

	Conditional Source Code
	#if and #endif
	The defined() Function
	The #else and #elif Directives
	#ifdef and #ifndef

	Producing Error messages
	Defining Target Hardware
	In-line Assembly Language
	The #asm and #endasm Directives

	Libraries
	Portable Device Driver Libraries
	An Example Development Scenario
	How SPI Works
	SPI_set_master(ARGUMENT);
	SPI_send_rec(0,4);

	Device Driver Library Summary

	Sample Project
	Project Specifics
	Project Foundations
	Asynchronous
	SCI
	RS-232

	Electrical Specifications
	PIC Implementation
	Anatomy of a PC serial port
	A Note On Chip Sets
	IRQ

	Programming Interrupts
	The Sample Project Code
	PIC16C74 Code
	PC Code

	C Precedence Rules
	ASCII Chart
	Glossary
	Bibliography
	Index

