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1. Introduction 
This book is intended to fill the need for an intermediate level overview of 
programming microcontrollers using the C programming language. It is aimed 
specifically at two groups of readers who have different, yet overlapping needs.  

!!!! The first group are familiar with C but require an examination of the general 
nature of microcontrollers: what they are, how they behave and how best to use 
the C language to program them.  

"""" The second group are familiar with microcontrollers but are new to the C 
programming language and wish to use C for microcontroller development 
projects. 

First Steps with Embedded Systems will be useful both as an introduction to 
microcontroller programming for intermediate level post-secondary programs 
and as a guide for developers coping with the growth and change of the 
microcontroller industry. 

1.1 Typographical Conventions 

Bold is used to indicate key terms.  

Italic is used for emphasis and to denote references to documents. 
Courier  is used for sample code and code excerpts. 
Courier 
Italic 

is used to indicate place holders in user input or in output produced by the 
software. For example, the filename START.ext has an italicised 
extension which indicates that the file can have any valid extension. 

_ _  the double underscore contains a small space to display both characters.  
Do not type the space in the double underscore character in your code. 

# is used within one section to refer to another section on a related topic. 

NOTE 
An important note will appear in this way. 

 

0x is used to denote a hexadecimal number. For example: 0xFFF 

0b is used to denote a binary number. For example: 0b010101 
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1.2 Explaining the Microcontroller 

Instead of presenting a detailed examination of a specific microcontroller or 
microcontroller family, First Steps with Embedded Systems explains concepts which 
are common to most 8 bit microcontrollers. This book will focus on several 
specific parts for example purposes. These include Motorola’s MC68HC705C8, 
National Semiconductor’s COP8SAA7 and Microchip’s PIC16C54 and 
PIC16C74. 

The industry provides a large array of speciality microcontroller configurations 
with optional features and feature combinations. However, many 8 bit 
microcontrollers have a common underlying architecture. This book examines 
this common architecture and guides you through the issues you need to 
understand in order to program a microcontroller. Learning common 
microcontroller architecture has several important advantages: 

$$$$ You will not be overwhelmed by details 
Microcontrollers have a set of common, general features. These general features 
form an essential preliminary foundation for learning specific microcontroller 
implementations. Variations, options and specific implementations offered by 
various microcontrollers are also included for example purposes. 

$$$$ You will learn the basics of portability 
One advantage of using C to program microcontrollers is program portability. 
Each microcontroller has an individual instruction set and assembly language. 
Modifying assembly language code so a program written for one 
microcontroller will run on a different microcontroller is very time consuming 
and effort intensive. 

Writing C code that supports general microcontroller features helps to avoid 
portability problems. Details relating to specific hardware implementations can 
be placed in separate library functions and header files. Using C library 
functions and header files ensures that application source code can be re-
compiled for different microcontroller targets. 

$$$$ You can spend more time on algorithm design and less on 
implementation 

C is a high level language. You will be able to program your applications quickly 
and easily using C. C’s breadth of expression is concise and powerful; therefore, 
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each line of code written in C can replace many lines of assembly language. 
Debugging and maintaining code written in C is much easier than in assembly 
language code. 

1.3 Book Contents 

Section 2, Microcontroller Overview, describes the standard microcontroller 
and covers the basic components of a microcontroller.  

Section 3, The Embedded Environment, describes basic microcontroller 
concepts such as input, output, interrupts, timing and memory. 
Section 4, Programming Fundamentals, includes brief explanations of basic 
topics such as number systems, languages and development tools.   

Section 5, First Look at a C Program, provides a sample C program and then 
examines the basic components represented by the example. 

Section 6, C Program Structure, covers the main components of a C program: 
directives, identifiers and statements. 

Section 7, Basic Data Types, covers the different data types and how to use 
them with variables and functions. 

Section 8, Operators and Expressions, covers arithmetic, assignment, 
comparison and bit level C operators and expressions.  

Section 9, Control Structures, covers conditional expressions and decision and 
looping structures. 

Section 10, Functions, covers defining, prototyping, calling and declaring C 
functions. This section also examines function parameters. 

Section 11, Complex Data Types, covers pointers, arrays, user defined types,  
enumerated types, structures and bitfields. 

Section 12, Storage and Data Type Modifiers, covers modifiers which specify 
location, value, size, and sign of data types. 

Section 13, The C Preprocessor, covers C preprocessor directives and related 
issues such as file inclusion, target hardware definition, conditional compilation, 
and inline assembly. 

Section 14, Libraries, describes the standard embedded systems libraries.  
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Section 15, Sample Project, follows the development of a small sample 
microcontroller project 
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2. Microcontroller Overview 
This section provides a brief overview of general microcontroller features and 
resources. It is designed to familiarise you with microcontroller terminology and 
basic microcontroller architecture. Many of the concepts introduced in this 
section will be revisited throughout the book. 

2.1 What is a Microcontroller? 

A microcontroller is a single chip, self-contained computer which incorporates 
all the basic components of a personal computer on a much smaller scale. 
Microcontrollers are often referred to as single chip devices or single chip 
computers. The main consequence of the microcontroller’s small size is that its 
resources are far more limited than those of a desktop personal computer. 

In functional terms, a microcontroller is a programmable single chip which 
controls a process or system. Microcontrollers are typically used as embedded 
controllers where they control part of a larger system such as an appliance, 
automobile, scientific instrument or a computer peripheral. Microcontrollers are 
designed to be low cost solutions; therefore using them can drastically reduces 
part and design costs for a project. 

Physically, a microcontroller is an integrated circuit with pins along each side. 
The pins presented by a microcontroller are used for power, ground, oscillator, 
I/O ports, interrupt request signals, reset and control. In contrast, the pins 
exposed by a microprocessor are most often memory bus signals (rather than 
I/O ports). 

NOTE 
A microcontroller is not  the same as a microprocessor. A microprocessor is a 
single chip CPU used within other computer systems. A microcontroller is itself a 
single chip computer system.  

 

Personal computers are used as development platforms for microcontroller 
projects. Development computers, usually personal or workstation computers, 
use a microprocessor as their principle computing engine. Microprocessors 
depend upon a variety of subsidiary chips and devices to provide the resources 
not available on the microprocessor. Additional chips required with a 
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microprocessor support memory storage, input/output control and specialized 
processing. 

A development platform is required to run embedded system development 
software such as assemblers, compilers, editors and simulators which require 
the processing power and memory capabilities of a desktop personal computer 
or workstation. 

The target platform is the platform on which the finished program will be run. 
For example, consider a developer who is creating a program for a Motorola 
68HC705C8 microcontroller. The developer writes, edits, and tests the program 
on a Pentium 133 personal computer: the development platform. The 
developer will use software which runs on a Pentium 133 but whose target 
device is the 68HC705C8. When the program is ready it is programmed in the 
target platform, the 68HC705C8. 

A microcontroller has seven main components:  

!!!! Central processing unit (CPU) 
"""" ROM 
%%%% RAM 
&&&& Input and Output  
'''' Timer 
(((( Interrupt circuitry 
)))) Buses 
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Figure 1: The microcontroller 

2.2 The Microcontroller in a System 

Microcontrollers do not function in isolation. As their name suggests they are 
designed to control other devices. The microcontroller can accept inputs from 
some devices and provide outputs to other devices within any given system. For 
example, a microcontroller may accept input from a switch and may send 
output to an LED. If the switch is pressed the microcontroller can be 
instructed to illuminate the LED. 

The microcontroller is often part of a larger system. For example, the switch 
and LED may be part of a compact disc player in a car stereo system. When a 
microcontroller is part of a larger system it is often referred to as an embedded 
controller because it is embedded within the larger system. 

2.3 Architecture 

There are two basic types of architecture: Harvard and Von Neumann. 
Microcontrollers most often use a Harvard or a modified Harvard-based 
architecture. 
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2.3.1 Von Neumann 

Von Neumann architecture has a single, common memory space where both 
program instructions and data are stored. There is a single data bus which 
fetches both instructions and data. Each time the CPU fetches a program 
instruction it may have to perform one or more read/write operations to data 
memory space. It must wait until these subsequent operations are complete 
before it can fetch and decode the next program instruction. The advantage to 
this architecture lies in its simplicity and economy. 

NOTE 
On some Von Neumann machines the program can read from and write to CPU 
registers, including the program counter. This can be dangerous as you can point 
the PC at memory blocks outside program memory space. Careless PC 
manipulation can cause errors which require a hard reset. 

 

2.3.2 Von Neumann Memory Map 

Every microcontroller has a very specific layout for its memory. Usually this is 
depicted with the help of a memory map. A memory map is a diagram which 
shows how the microcontroller memory is used. The following example map is 
from the Motorola MC68HC705C8 microcontroller configured for 176 bytes of 
RAM and 7744 bytes of PROM: 
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 Contents Address 
 I/O 32 bytes 0x0000 

0x001F 
 User Prom 48 bytes 0x0020 

0x004F 
 176 Bytes of RAM 0x0050 

0x00BF 
 STACK 0x00C0 

0x00FF 
 User PROM 96 bytes 0x0100 

0x015F 
 User PROM 7584 bytes 0x0160 

 
0x1EFF 

 Boot ROM 223 bytes 0x1F00 
0x1FDE 

 Option Register 0x1FDF 
 Boot ROM vectors 16 bytes 0x1FE0 

0x1FEF 
 Unused 4 bytes 0x1FF3 
 User PROM vectors 12 bytes 0x1FF4 

0x1FFF 
Figure 2: Von Neumann memory map for the MC68705C8 

2.3.3 Harvard 

Harvard architecture computers have separate memory areas for program 
instructions and data. There are two or more internal data buses which allow 
simultaneous access to both instructions and data. The CPU fetches 
instructions on the program memory bus. If the fetched instruction requires an 
operation on data memory, the CPU can fetch the next program instruction 
while it uses the data bus for its data operation. This speeds up execution time 
at the cost of more hardware complexity. 

Since Harvard machines assume that only instructions are stored in program 
memory space, how do you write and access data stored in program memory 
space? For example, a data value declared as a C constant must be stored in 
ROM as a constant value. Different microcontrollers have different solutions to 
this problem. A good C compiler automatically generates the code to suit the 
target hardware’s requirements. 

Some chips have special instructions allowing the retrieval of information from 
program memory space. These instructions are always more complex or 
expensive than the equivalent instructions for fetching data from data memory. 
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Typically these chips have a register analogous to the program counter (PC) 
which refers to addresses in program space. Also, some chips support the use 
of any 16 bit value contained in data space as a pointer into the program 
address space. These chips have special instructions to use these data pointers. 

NOTE 
It is important that you understand how your Harvard architecture part deals with 
data in program space. It is possible to generate more efficient code using symbolic 
constants declared with #define directives instead of declared constants. You may 
also create global variables for constant values.  

 

2.3.4 Harvard Memory Map 

The following memory map is from the Microchip PIC16C74. Notice that 
program memory is paged and data memory is banked. The stack is 
implemented in hardware and the developer has no access to it. 

Program Memory (4K)  Data Memory (256 bytes) 
   Bank 0 Bank 1  

Reset Vector 0x0000 Program 0x00   0x80 
  Counter  Specific Specific  
    Registers Registers  

Interrupt Vector 0x0004 8     
Program Memory  0x0005 Level     

Page 0 0x07FF Stack     
Program Memory  0x0800      

Page 1 0x0FFF  0x1F   0x9F 
Unimplemented 0x1000  0x20 General General 0xA0 

    Purpose Purpose  
 0x1FFF  0x7F Register Register 0xFF 

Figure 3: Harvard memory map PIC16C74 

The following is the memory map for the COP8SAA7. The stack grows down 
from the top of general purpose RAM. 
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Program Memory (1024 
bytes) 

 Data Memory (64 bytes) 

     
 0x000 Program   0x00 
  Counter  General Purpose   
    RAM  
      
     0x2F 
    Unused RAM 0x30 
     0x7F 
     0x80 

Interrupt Vector 0x0FF   Specific  
    Registers  
     0xFE 

 0x400   Segment Register 0xFF 
Figure 4: Harvard memory map COP8SAA7 

2.3.5 The Central Processing Unit 

The central processing unit (CPU) does all the computing: it fetches, decodes 
and executes program instructions and directs the flow of data to and from 
memory. The CPU performs the calculations required by program instructions 
and places the results of these calculations, if required, into memory space. 

Most CPUs are synchronous. This means that they depend on the cycles of a 
processor clock. A clock generates a high-frequency square wave usually 
driven by a crystal, a RC (resistor capacitor) or an external source. The clock is 
sometimes referred to as an oscillator. The clock speed, or oscillation rate, is 
measured in megahertz (MHz) which represents one million cycles/second. For 
example, if the clock speed is 3 MHz then there are 3,000,000 clock 
cycles/second. 

Clock configurations are microcontroller dependant. The following are some 
sample clock configurations: 

"# The National Semiconductor COP8SAA7 has four clock options: crystal 
with bias resistor, crystal without bias resistor, R/C, and external. The 
option is selected with bits 3 and 4 of the ECON register. The CK1 and 
CK0 pins are used for clock related input and output.   

"# The Motorola MC68HC705C8 has two pins, OSC1 and OSC2, which 
provide connections for an on-chip oscillator. A crystal, ceramic resonator, 
or external signal can be attached to the pins. The oscillator frequency is 
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two times the internal bus rate and the processor clock cycle is two times 
the oscillator frequency. 

"# The Microchip PIC16C54 has clock input pin OSC1/CLKIN and clock 
output pin OSC2/CLKOUT. OSC1/CLKIN is internally divided by four 
to generate four clocks. There are four possible modes: low power crystal, 
crystal/resonator, high speed crystal, resistor/capacitor. 

The clock controls the sequence of instructions.  Most microcontrollers divide 
their basic clock frequency to arrive at a bus-rate clock. Each instruction takes a 
specific number of bus-rate clock cycles in order to execute. The following 
depicts the clocking scheme for the Harvard architecture Microchip PIC16C54: 

 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 
OSC
1 

            

Q1             

Q2             

Q3             

Q4             

PC PC PC + 1 PC + 2 

OSC
2 

            

 Fetch Instruction (PC)  
 Execute Instruction (PC-1) Fetch Instruction (PC+1)  
 Execute Instruction (PC) Fetch Instruction (PC+2) 
 Execute Instruction (PC+1) 

Figure 5: Instruction clocking on the PIC16C54 
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2.3.6 Central Processing Unit 

Figure 6: The CPU 

One part of the CPU is responsible for performing calculations and executing 
instructions. This part is called the arithmetic logic unit, or ALU. There are a 
variety of subsidiary components which support the ALU. These components 
include the decoder, the sequencer and a variety of registers.  

The decoder converts instructions stored in program memory into codes 
which the ALU can understand. The sequencer manages the flow of data 
along the microcontroller’s data bus. Registers are used by the CPU to 
temporarily store vital data which are volatile: they can change during program 
execution. Most microcontroller registers are memory-mapped, associated with 
a memory location, and can be used like any other memory location. 
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Registers store the state of the CPU. If the contents of microcontroller memory 
and the contents of these registers are saved it is possible to suspend program 
operation for an indefinite period of time and restart exactly in the state when 
the program was suspended.  

The number and names of registers varies drastically among microcontrollers. 
However there are certain registers which are common to most 
microcontrollers, although the names may vary. These include: 

"# The stack pointer 
 The stack pointer contains the address of the next location on the stack. 

The address in the stack pointer is decremented when data is pushed on the 
stack and incremented when data is popped from the stack. 

"# The index register 
 The index register is used to specify an address when certain addressing 

modes are used. It is also known as the pointer register. The Microchip 
devices use the name FSR (file select register).   

"# The program counter 
 Perhaps the single most important CPU register is the program counter 

(PC). The PC holds the address of the next instruction in program memory 
space. It contains the address of the next instruction the CPU will process. 
As each instruction is fetched and processed by the ALU, the CPU 
increments the PC and thereby steps through the program stored in the 
program memory space. 

"# The accumulator 
 The accumulator is a register that can hold operands or results of 

operations as necessary. The Microchip devices use the name W (working) 
register. 

Other registers may reflect results from the instruction just executed, control 
the options available on the device, and enable access to certain areas of 
memory. 

2.3.7 ROM 

ROM, read only memory, is non-volatile memory used for program 
information and permanent data. The microcontroller uses ROM memory 
space to store program instructions it will execute when it is started or reset. 
Program instructions must be saved in non-volatile memory so that they are not 
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affected by loss of power. The microcontroller usually cannot write data to 
program memory space.  

2.3.8 RAM 

RAM, random access memory, is used to write and read data values as a 
program runs. RAM is volatile: if you remove the power supply its contents are 
lost. Any variables used in a program are allocated from RAM.  

The time to retrieve information from RAM does not depend upon the location 
of the information because RAM is not sequential, hence the term random 
access. 

Most small microcontrollers provide very little RAM which forces you to write 
applications that use RAM wisely. Manipulating large data structures and using 
pointers, re-entrant or recursive functions use large amounts of RAM and are 
techniques which are generally avoided on microcontrollers.  

Some C instructions which are rarely used on larger platforms are more 
commonly used in C programs for microcontrollers. One example is the goto 
instruction reviled by traditional C programmers. While goto is rarely used on 
larger platforms, in embedded system programming it can sometimes be used 
to save RAM. 

If your hardware supports a stack, the stack contents and the space required to 
manage the stack are usually allocated from RAM. A stack is a structure which 
records the chronological ordering of information. It is used mainly in 
subroutine calls and interrupt servicing. A stack is a LIFO (last in, first out) 
structure. The following stack is from the Motorola MC68HC705C8. The stack 
is 64 bytes from address 00C0 to 00FF: 

0x00C0    
    
   Stack pointer 
   bit number 5 4 3 2 1 0 
0x00FF   0 0 0 0 0 1 1 address 

Figure 7: MC68HC705C8 stack 

The stack pointer contains the address of the next free location on the stack. 
On reset the stack pointer for the MC68HC705C8 holds the value 00FF. The 
stack pointer is decremented when data is pushed on the stack and incremented 
when data is popped from the stack.  
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2.3.9 I/O Ports 

There are two main port types, parallel and serial, and two port modes, 
synchronous and asynchronous. Parallel I/O requires a data line for each bit, 
while serial I/O uses a single line and transfers bits in sequence. Synchronous 
I/O is synchronised to a clock while asynchronous I/O is not. Microcontrollers 
most often have parallel I/O capability built in and serial I/O as a peripheral 
feature.  

The following are some sample port configurations: 

"# The COP8SAA7 has four bidirectional 8 bit I/O ports called C, G, L and F 
where each bit can be either input, output or tristate. Each port has an 
associated configuration register and data register. It also has a 
MICROWIRE/PLUS synchronous serial interface 

"# The Motorola MC68HC705C8 has 3 8 bit ports called A, B, and C which 
can be either inputs or outputs depending on the value of the data direction 
register (DDR). There is also a 7 bit fixed input port called port D which is 
used for serial port programming. This device also has a SCI (serial 
communications interface) asynchronous serial interface and a SPI (serial 
peripheral interface) which both use Port D for their functions. 

"# The Microchip PIC16C74 has five ports: PORTA through PORTE. Each 
port has an associated TRIS register which controls the direction. PORTA 
uses the register ADCON1 to select analog or digital configuration. 
PORTD and PORTE can be configured as an 8 bit parallel slave port. The 
PIC16C74 has a SSP (synchronous serial port) module which can operate 
both in SPI and I2C modes. The device also has a SCI module 

Serial ports have a frequency of operation called their baud rate. The baud rate 
is the reciprocal of the transmission time for each bit. For example, if the baud 
rate is 9600 bits/second then the transmission time for each bit is 1

9600 of a 
second.  

While microcontrollers do not support the same sophisticated input/output 
functions as larger platforms, such as those in the C stdio library, they still 
support device I/O. The input/output channels allow the microcontroller to 
communicate with such peripheral devices as timers, sensors, keypads and LCD 
screens. 

Microcontroller ports are usually memory-mapped and can therefore be used 
like any other memory location. Ports usually consist of 8 or fewer bits which 



 Architecture 

17 

often support tristate logic with three states: input, output or high 
impedance. High impedance mode is the state of being undefined or floating. 
Some devices only support binary logic and in those cases the bit can be 
defined as a combination of only two of the three states. If a port has 
programmable input and output it will also have an associated register which 
specifies whether the data is input or output. On many devices this register is 
called the DDR (data direction register). 

To reserve memory-mapped port locations so your compiler does not use them 
for data memory allocation, you can use a #pragma preprocessor directive to 
specify the location of each mapped I/O register. This also allows you to 
provide a useful mnemonic name for each I/O port. You can then use the 
variable name associated with the port to read or write to a particular I/O port. 
The following defines two ports and their associated direction registers on the 
Motorola 68HC705C8: 

#pragma portrw PORTA @ 0x0000;  
#pragma portrw PORTB @ 0x0001; 
#pragma portrw DDRA  @ 0x0004; 
#pragma portrw DDRB  @ 0x0005; 

Example 1: Defining ports with #pragma directives 

It is then possible to write the value AC to the port using the C command: 
DDRA=0xFF; //set the direction to output 
PORTA=0xAC; //set the port to the value AC 

2.3.10 Timer 

A timer is a counter that is incremented at a fixed rate when the system clock 
pulses. There are several different types of timers available. A timer/counter 
can perform several different tasks. The CPU uses the timer to keep track of 
time accurately. The timer can generate a stream of pulses or a single pulse at 
different frequencies. It can be used to start and stop tasks at desired times. 

A COP (computer operating properly) or watchdog timer checks for runaway 
code execution. The hardware implementation of watchdog timers varies 
considerably between different processors.  In general watchdog timers must be 
turned on once within the first few cycles after reset and then reset periodically 
with software. Some watchdog timers can programmed for different time-out 
delays. The reset sequence is sometimes as simple as a specialized instruction or 
as complex as sending a sequence of bytes to a port. Watchdog timers either 
reset the processor or execute an interrupt when they time out. 
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Timer configurations vary among microcontrollers. the following are some 
sample configurations: 

"# National Semiconductor’s COP8SAA7  has a 16 bit timer called T1, a 16 bit 
idle timer called T0 and a watchdog timer. The idle timer T0 helps to 
maintain real time and low power during the IDLE mode. The timer T1 is 
used for real time controls tasks with three user-selectable modes.    

"# The Motorola MC68HC705C8 has a 16 bit counter and a COP watchdog 
timer.  

"# The Microchip PIC17C42a has four timer modules called TMR0, TMR1, 
TMR2 and TMR3, and a watchdog timer. TMR0 is a 16 bit timer with 
programmable prescalar, TMR1 and TMR2 are 8 bit timers and TMR3 is a 
16 bit timer. 

2.3.11 Interrupt Circuitry 

An interrupt is an event that suspends regular program operation while the 
event is serviced by another program. Interrupts increase the response speed to 
external events. Different microcontrollers have different interrupt sources 
which can include external, timer and serial port interrupts. When an interrupt 
is received current operation is suspended, the interrupt is identified and the 
controller jumps (vectors) to an interrupt service routine. 

There are two sources of interrupt: hardware and software. Hardware interrupts 
include a signal to a pin, timer overflow, and serial port interrupts. Software 
interrupts are commands given by the programmer, such as the SWI instruction 
for the Motorola MC68HC705C8. 

There are two different interrupt types: maskable and non-maskable. A 
maskable interrupt can be disabled and enabled while non-maskable interrupts 
can not be disabled and are therefore always enabled. 

Most 8 bit microcontrollers use vectored arbitration interrupts. Vectored 
arbitration means that when a specific interrupt occurs the interrupt handler 
automatically branches to an address associated with that interrupt.   

The servicing of interrupts in general is dictated by the status of the GIE 
(Global Interrupt Enable). GIE is cleared when an interrupt occurs and all 
interrupts are delayed until it is set.  
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2.3.12 Buses 

A bus carries information in the form of signals. There are three main buses: 
address, data, and control.  

1) The address bus is unidirectional and carries the addresses of memory 
locations indicating where the data is stored. The number of wires in the 
address bus determines the total number of memory locations. With a 13 
bit address bus, for example, there would be 213 or 8192 memory locations.   

2) The data bus is bi-directional and carries information between the CPU 
and memory or I/O devices. Computers are often classified according to 
the size of their data bus. The term “8-bit microcontroller” refers to a 
microcontroller with 8 lines on its data bus. The number of wires in the 
data bus determines the number of bits that can be stored in each memory 
location. 

3) The control bus carries data which controls system activity. Often this data 
includes timing signals which synchronize the movement of other 
information. 

2.4 Sample Microcontroller Configurations 

The following are some sample microcontroller configurations.  

2.4.1 Motorola MC68HC705C8 

The MC68HC705C8 is a member of Motorola’s MC68HC05 family. It based 
on Von Neumann architecture. 
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Pins 40 or 44 pins  
Clock 4MHz On-chip oscillator with crystal/ceramic resonator  
RAM 176 bytes default (options include 208, 272 and 304) 
ROM 7744 bytes default (options include 7696, 7648 and 7600) 
Voltage 3.0 to 5.5 Volt 
Registers Accumulator, Index, Program Counter, Stack pointer, Condition Code 

Register 
Timer(s) COP, 16 bit programmable timer 
Ports 4: 8 bit  I/O ports PORTA, PORTB and PORTC, 7 bit input PORTD 
Interrupts 5 interrupts: IRQ pin, SWI, SPI, SCI and timer 

Serial SPI (serial peripheral interface), SCI (serial communications interface)  
Options Clock monitor 

Table 1: Hardware characteristics of the Motorola MC68HC705C8 

2.4.2 National Semiconductor COP8SAA7 

The COP8SAA7 is a member of National Semiconductor’s COP8™ feature 
family. The COP8SAA7 is based on a modified Harvard architecture. 

Pins 16, 20, 28, 40, 44 pin 
Clock Four user selectable clock options: 0.455 to 15 MHz 
RAM 64 bytes 
ROM 1024 bytes + 8 bytes User Storage space 
Voltage 2.7 to 5.5 Volts 
Registers Accumulator, Program Counter, PSW, CNTRL, ICNTRL, stack pointer, X, 

B, S, SIOR, 2 timer registers 
Timer(s) Watchdog, idle timer, 16 bit timer  
Ports 5: 8 bit bidirectional I/O Ports C, G, L and F, 8 bit output Port D   
Interrupts 8 interrupts: timer1, timer0, portL wakeup, software trap, 

microwire/plus, external 
Serial MICROWIRE/PLUS (SPI compatible) 
Options Clock monitor 
Table 2: Hardware characteristics of the National Semiconductor COP8SAA7 

2.4.3 Microchip PIC16C54 

The PIC16C54 is a member of the PIC16C5x family. These are 8 bit, EPROM-
based CMOS microcontrollers. The PIC16C54 is Harvard architecture. 
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Pins 18 pins 
Clock 20 MHz user selectable from low power crystal, crystal, high speed 

crystal, R/C 
RAM 32 bytes 
ROM 512 words (12 bits) 
Voltage 2.5 V to 6.25 V 
Registers status, option, INDF, FSR, program counter, Working 
Timer(s) watchdog, 8 bit timer, reset timer 
Ports 4 bit I/O Port A, 8 bit I/O Port B  
Interrupts 1 
Serial none 
Options none 
Table 3: Hardware characteristics of the Microchip PIC16C54 

2.4.4 Microchip PIC16C74 

The PIC16C74 is a member of the PIC16C7x family. These are 8-bit, EPROM-
based CMOS microcontrollers. The PIC16C74 is Harvard architecture. 

Pins 40/44 
Clock 20 MHz 
RAM 192 
ROM 4K 
Voltage 3 to 6 
Registers 48 including Status, Option, Intcon, PIE1, PIR1, PIE2, PIR2, PCON, PCL, 

PCLATH,INDF, FSR 
Timer(s) 2 8 bit, 16 bit,  watchdog 
Ports 6 bit PORTA, 8 bit PORTB, PORTC, parallel PORTD, 3 bit PORTE also 

TRISA, TRISB, TRISC, TRISD, and TRISE 
Interrupts 12 
Serial SPI, I2C, SSP, SCI 
Options A/D Converter 
Table 4: Hardware characteristics of the Microchip PIC16C74 





 

23 

3. The Embedded Environment 
Microcontrollers used in development projects have very limited resources. You 
are working close to your target machine and you must be familiar with your 
target hardware construction and operation. 

A good quality C development environment incorporates tools which allow you 
to concentrate primarily on your applications and  not on the hardware which 
runs them. However, you cannot ignore low-level details of your target 
hardware. The better you understand your run-time environment, the better 
you can take advantage of its limited capabilities and resources. 

3.1 The Embedded Difference 

There are many aspects of embedded systems development which must be 
considered. These are: 

Reliability 
Embedded systems must be reliable. Personal computer programs such as word 
processors and games do not need to achieve the same standard of reliability 
that a microcontroller application must. Errors in programs such as word 
processors may result in errors in a document or loss of data. An error in a 
microcontroller application such as a television remote control or compact disc 
player will result in a product that does not work and consequently does not 
sell. An error in a microcontroller application such as an antilock braking 
system or autopilot could be fatal.   

Efficiency 
Issues of efficiency must be considered in real time applications. A real time 
application is one in which must be able to act at a speed corresponding with 
the occurrence of an actual process. 

Cost 
Many embedded systems must compete in a consumer market and cost is an 
important issue in project development.  
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3.2 Fabrication Techniques 

CMOS 
Complementary Metal Oxide Semiconductor (CMOS) is a technique commonly 
used to fabricate microcontrollers. CMOS requires less power and CMOS chips 
can be static which allows the implementation of a sleep mode. CMOS 
microcontrollers must have all inputs connected to something. 

PMP 
Post Metal Programming (PMP) allows ROM to be programmed after final 
metalization. This allows ROM to be programmed very late in the productions 
cycle. 

3.3 Memory Addressing and Types 

Each microcontroller has a specific addressing range. An addressing range is the 
number of addresses a microcontroller can access. The addressing scheme used 
to access to these spaces varies from processor to processor, but the underlying 
hardware is similar. 

3.3.1 RAM 

Random access memory1 or RAM consists of memory addresses the CPU can 
both read from and write to. RAM is used for data memory and allows the CPU 
to create and modify data as it executes the application program. 

RAM is volatile, it holds its contents only as long as it has a constant power 
supply. If power to the chip is turned off, the contents of RAM are lost. This 
does not mean that RAM contents are lost during a chip reset. Vital state 
information or other data can be recorded in data memory and recovered after 
an interrupt or reset. 

                                                 

1 random access memory is used because the CPU can access any block of memory in 
RAM in the same amount of time. This differs from sequential storage such as tape 
where access time differs for different parts of the storage space. 
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Some chips provide an alternate RAM power supply so that memory contents 
can be maintained even when the rest of the chip is without power. This does 
not make RAM any less volatile, without a backup power source the contents 
would still be lost. This type of RAM is called battery backed-up static RAM. 

3.3.2 ROM 

ROM, read only memory,  is typically used for program instructions. The ROM 
in a microcontroller usually holds the final application program.  

Maskable ROM is memory space that must be burned in by the manufacturer 
of the chip as it is constructed. To do this, you must provide the chip builder 
with the ROM contents you wish the chip to have. The manufacturer will then 
mask out appropriate ROM blocks and hardwire the information you have 
provided. 

Since recording chip ROM contents is part of the manufacturing process, it is a 
costly one-time expense. If you intend to use a small number of parts, you may 
be better off using chips with PROM. If you intend to use a large number of 
parts for your application, then the one-time expense of placing your program 
in ROM is more feasible. 

3.3.3 PROM 

Programmable ROM, or PROM, started as an expensive means to prototype 
and test application code before burning ROM. In recent years PROM has 
gained popularity to the point where many developers consider it a superior 
alternative to burning ROM. As microcontroller applications become more 
specialised and complex, needs for maintenance and support rise. Many 
developers use PROM devices to provide software updates to customers 
without the cost of sending out new hardware. 

There are many programmable ROM technologies available which all provide a 
similar service. A special technique is used to erase the contents of 
programmable ROM then a special method is used to program new instructions 
into the ROM. Often, the developer uses separate hardware to perform each of 
these steps. 

3.3.4 EPROM 

EPROM (erasable programmable ROM) is not volatile and is read only. Chips 
with EPROM have a quartz window on the chip. Direct exposure to ultra-violet 
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radiation will erase the EPROM contents. EPROM devices typically ship with a 
shutter to cover the quartz window and prevent ambient UV from affecting the 
memory. Often the shutter is a sticker placed on the window. 

Developers use an EPROM eraser to erase memory contents efficiently. The 
eraser bombards the memory with high-intensity UV light. To reprogram the 
chip, an EPROM programmer is used, a device which writes instructions into 
EPROM.  

The default, blank state for an EPROM device has each block of memory set. 
When you erase an EPROM you are really setting all memory blocks to 1. 
Reprogramming the device resets or clears the appropriate EPROM bits to 0. 

Because of the way EPROM storage is erased, you can not selectively delete 
portions of EPROM – when you erase the memory you must clear the entire 
storage space. 

3.3.5 EEPROM 

EEPROM (electrically erasable programmable ROM) devices have a significant 
advantage over EPROM devices as they allow selective erasing of memory 
sections. EEPROM devices use high voltage to erase and re-program each 
memory block. Some devices require an external power source to provide the 
voltage necessary for erasing and writing and some have an onboard pump 
which the chip can use to build up a charge of the required voltage.  

Developers can reprogram EEPROM devices while the chip is operating. 
However, EEPROM that can be rewritten is usually restricted to data memory 
storage. EEPROM storage used as program memory typically requires the use 
of an external power source and a programmer just like EPROM storage. 

The most common use for EEPROM is recording and maintaining 
configuration data vital to the application. For example, many modems use 
EEPROM storage to record the current configuration settings. This makes the 
configuration available to the modem user after cycling the power on the 
modem. Often the default or factory configuration settings are stored in ROM 
and the user can issue a command to restore default settings by overwriting the 
current contents of EEPROM with the default information. 

Sometimes chip manufacturers build EEPROM blocks into the chip for 
last-minute configuration options. This saves manufacturers money as they can 
design and fabricate a single chip and then set the EEPROM blocks to provide 
special purpose versions with specific capabilities. This method is often  used to 
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produce microcontroller versions for use on an evaluation board where chip 
access to its own onboard ROM is turned off and replaced with external 
EPROM or EEPROM storage. This allows developers to test application code 
in cycles by downloading it to the board, programming the code into the 
EPROM or EEPROM, and debugging it as it executes in the target hardware.  

3.3.6 Flash Memory 

Flash memory is an economical compromise between EEPROM and EPROM 
technology. As with EEPROM high voltage is applied to erase and rewrite flash 
memory. However, unlike EEPROM, you can not selectively erase portions of 
flash memory – you must erase the entire block as with EPROM devices. Many 
manufacturers are turning to flash memory. It has the advantages of not 
requiring special hardware and being inexpensive enough to use in quantity. 

Manufacturers often provide customers with microcontroller products whose 
ROM is loaded with a boot or configuration kernel where the application code 
is written into flash memory. When the manufacturer wants to provide the 
customer with added functionality or a maintenance update, the hardware can 
be reprogrammed on site without installing new physical parts. The hardware is 
placed into configuration mode which hands control to the kernel written in 
ROM. This kernel then handles the software steps needed to erase and re-write 
the contents of the flash memory. 

Another useful implementation of flash memory includes a device which can 
connect electronically to a computer owned by the manufacturer. The 
configuration kernel connects to the manufacturer’s computer, downloads the 
latest version of the control application and writes this application to flash 
memory. Such elaborate applications are typically beyond the resources of an 8 
bit microcontroller; we mention the example to show the advantage of 
programmable ROM technologies. 

3.3.7 Registers 

The CPU maintains a set of registers which it uses to store information. 
Registers are used to control program execution and maintain intermediate 
values needed to perform required calculations. Some microcontrollers provide 
access to CPU registers for temporary storage purposes. This can be extremely 
dangerous as the CPU can at any time overwrite a register being used for its 
designated purpose. 
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8 bit microcontrollers do not often provide resources for register memory 
outside the CPU. This means that the C register keyword is meaningless 
because the compiler can not dedicate a CPU register for data storage. 

Some C implementations will set aside RAM for special purpose pseudo-registers 
to use when your application attempts certain operations. For example, if you 
attempt a 16 bit math operation, the compiler can dedicate a portion of base-
page RAM for 16 bit pseudo-registers which store values during math 
operations. You can use these special registers for temporary purposes in places 
where your code will not require them for their intended purpose. You must be 
careful, if the compiler uses a pseudo-register it will overwrite current contents. 

3.3.8 Scratch Pad 
Microcontrollers are typically very short on resources, especially data memory 
space. Many C compilers use some available RAM for internal purposes such as 
pseudo-registers. An efficient C compiler will support scratch pads in data 
memory. A scratch pad is a block of memory which can be used for more than 
one purpose. 

 

# See 11.6 
Unions 

The simplest way to conserve data memory is through the judicious use of 
global variables. For example, in a traditional C environment developers create 
local counter variables every time they are required because data memory is 
cheap and plentiful. However, embedded systems developers will often create 
global counter variables. Any function can then use this allocated block of data 
memory when a counter or temporary variable is needed. Examine the 
following union called ScratchPad which is declared globally: 
union { 
 int asInt; 
 char asChar; 
 short asShort; 
 long asLong; 
 void near * asNPtr; 
 void far * asFPtr; 
 struct { 
  short loByte; 
  short hiByte; 
 } asWord; 
} ScratchPad; 

Example 2: Using a union structure to create a scratch pad 
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To use the global variable as a loop counter within a function, the following 
code could be used: 

int somefunc() { 
 ScratchPad.asShort=0; 
 while (ScratchPad.asShort < 10) { 
  // some code 
  ScratchPad.asShort += 1; 
 } // end while 
 return (someIntValue); 
} 

Example 3: Using globally allocated data space in a function 

Some C compilers support a C extension which fixes the location of a symbol 
in memory. In these cases, the compiler typically does not check that the 
memory specified is not being used by other data. You can use this feature to 
manage how variables are placed in data memory space. More importantly you 
can overlay one variable symbol on top of the memory allocated for another. 
This is a useful technique for reusing allocated variable space. 

For example, it is possible to reuse internal the pseudo-register variables created 
by the compiler in portions of your code that do not use them for their 
designated purpose. For example, if your compiler creates the 16 bit pseudo 
index register __longIX you can reuse this 16 bit location with the following 
statement2: 

long int myTemp @ __longIX; 
You must ensure that you understand exactly how and when the compiler uses 
these internal variables before you reuse the variable space. 

Fixing a symbol at a specific memory location will likely affect the optimization 
a compiler will perform with the symbol. It may be more worthwhile to avoid 
this method of overlaying memory in favour of the savings generated by the 
compiler’s optimizer. 

3.4 Interrupts 

Interrupts allow the microcontroller to interact with its environment. If your 
microcontroller does not have interrupts you must poll peripherals to 

                                                 

2 The @ symbol uses the address allocated to __longIX for the new symbol myTemp. 
This is not standard C so the syntax your compiler provides may be different. 
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determine if they require servicing. It is much more efficient to have peripheral 
devices inform, or interrupt, the controller when they require servicing. 

An interrupt is a signal sent to the microcontroller which causes it to stop its 
current execution and perform another action. The chip stops executing your 
main program and executes some other code. Interrupts can be edge triggered 
(rising or falling) or level triggered. 

3.4.1 Interrupt Handling 

Code executed by an interrupt is not generally considered part of the main 
application. Since this code handles the cases where an interrupt occurs, it is 
called an interrupt handler or an interrupt service routine. 

NOTE 
It is vital that you understand how your target hardware implements interrupts as 
this affects both the service routines you must write and how you write them. 

 

In general, you must write an interrupt  service routine for each interrupt your 
target hardware can detect even if the handler consists solely of a return from 
interrupt or a similar instruction. 

3.4.2 Synchronous and Asynchronous Interrupt Acknowledgement 

Interrupts are asynchronous: they are events that can occur during, after, or 
before an instruction  cycle. Interrupt acknowledgement can be either 
synchronous or asynchronous. Most interrupt acknowledgement is synchronous, the 
instruction currently being executed is completed before the interrupt is 
acknowledged. 

Theoretically, when the processor acknowledges an interrupt asynchronously it 
halts execution of the current instruction and immediately services the interrupt. 
The only asynchronously acknowledged interrupt is RESET. Since RESET 
erases the state of the machine, it is a moot point whether the CPU actually 
halts execution of the current instruction or not. 

When the processor acknowledges an interrupt synchronously, it finishes 
executing the current instruction and, before it performs a fetch for the next 
instruction, it services the interrupt. 
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3.4.3 Servicing Interrupts 

There are two general ways in which microcontrollers service interrupts, each 
with several variations. 

!!!! Vectored Arbitration System 
Some machines reserve a portion of program memory for interrupt vectors. 
The location of each particular vector in program memory may vary from 
processor to processor but it cannot be changed by the programmer. The 
programmer can only change the data at each vector location.  

Each interrupt vector contains the address of that interrupt’s service routine. 
When the compiler allocates program memory for interrupt handlers, it places 
the appropriate address for the handler in the appropriate interrupt vector. To 
help the compiler you must usually tell it where the interrupt vector for each 
interrupt is located in program memory. 

When an interrupt occurs, global interrupts are first disabled to prevent an 
interrupt service from being itself interrupted.  On the COP8SAA7 this 
involves setting the GIE bit to zero. The machine then reads the address 
contained at the appropriate interrupt vector. It then jumps to the address and 
begins executing the interrupt service code. Vectored interrupts are much faster 
than non-vectored.  

The following are sample interrupts from the National Semiconductor 
COP8SAA7: 
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Rank Source Description Vector Address * 

1 Software INTR Instruction 0bFE - 0bFF 
2 Reserved Future 0bFC - 0bFD 
3 External G0 0bFA - 0bFB 
4 Timer T0 Underflow 0bF8 - 0bF9 
5 Timer T1 T1A/Underflow 0bF6 - 0bF7 
6 Timer T1 T1B 0bF4 - 0bF5 
7 MICROWIRE/PLUS BUSY Low 0bF2 - 0bF3 
8 Reserved Future 0bF0 - 0bF1 
9 Reserved Future 0bEE - 0bEF 
10 Reserved Future 0bEC - 0bED 
11 Reserved Future 0bEA - 0bEB 
12 Reserved Future 0bE8 - 0bE9 
13 Reserved Future 0bE6 - 0bE7 
14 Reserved Future 0bE4 - 0bE5 
15 Port L/Wakeup Port L Edge 0bE2 - 0bE3 
16 Default VIS Instruction Execution 

without any interrupts 
0bE0 - 0bE1 

* b represents the Vector to Interrupt Service routine (VIS) block. VIS and the vector 
table must be within the same 256 byte block. If VIS is the last address of a block 
the table must be in the next block. 

Table 5: Sample vectored interrupts 

"""" Non-Vectored Priority System 
When an interrupt occurs, the PC branches to a specific address. At this 
address the interrupts must be checked sequentially to determine which one has 
caused the interrupt.  

This scheme can be very slow and there can be a large delay between the time 
the interrupt occurs and the time it is serviced. However, the programmer can 
set the interrupt priority and non-vectored interrupts are feasible for 
microcontrollers with less than five interrupts. 

3.4.4 Interrupt Detection 

On most chips, the interrupt process saves the state of the machine including 
the current program counter, stack pointer, and register contents. This is done 
to ensure that after an interrupt is serviced execution will resume at the 
appropriate point in main program with no loss of data. 
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Some chips save the machine state automatically while others will only save a 
portion of the machine state. In the second case it is up to the programmer to 
provide code which saves the current state. Usually each interrupt handler will 
do this before attempting anything else. The location and accessibility of the 
saved state information varies from machine to machine. In most cases, it is 
saved on a stack located in data memory. 

For example the Motorola MC68HC705C8 saves the machine state in the stack 
as follows: 

 
 
 

 

 

 
Figure 8: Saving the machine state on the MC68HC705C8 

Many C compilers for embedded microcontrollers reserve a portion of data 
memory for internal uses such as for pseudo-registers. You must check your 
compiler documentation to determine what code you must write to preserve the 
information located in these memory blocks. Some compilers document their 
internal data memory overhead so you can determine what you must preserve 
in your interrupt handlers while others automatically generate code to preserve 
this data.  

One way to conserve memory is to avoid unnecessarily preserving data. If your 
compiler creates a pseudo register for 16 bit math operations and your interrupt 
handler does not use this pseudo register, then you need not preserve its state. 

3.4.5 Executing Interrupt Handlers 

To minimize the possibility of an interrupt handler being itself interrupted, the 
microcontroller will usually disable interrupts while executing an interrupt 
handler. The method of doing this varies from chip to chip. Some platforms 
automatically disable interrupts, while others leave this to the programmer. 
Masking interrupts is useful during timing critical sections of code. The 
COP8SAA7, for example, has a GIE (Global Interrupt Enable) which is set to 
allow interrupts or cleared to prevent interrupts. On the Motorola 
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MC68HC705C8 the interrupt mask bit of the Condition Code Register is set to 
prevent interrupts. 

Some machines provide a small number of non-maskable interrupts (NMI). 
Interrupts that can be disabled are maskable, those which you cannot disable are 
non-maskable. For example, RESET is non-maskable – regardless of the code 
currently executing the CPU  must service a RESET interrupt. Some 
microcontrollers also designate software interrupts or BREAK instructions that 
you can use as a non-maskable interrupt. 

3.4.6 Multiple Interrupts 

What happens after the CPU services an interrupt? This varies depending upon 
target hardware. In general, the CPU first checks for any outstanding interrupts. 

One some machines the CPU first fetches an instruction and then checks for 
interrupts after executing this instruction. This guarantees that no matter how 
many interrupts cue up, the machine will always step through program code and 
no more than one interrupt handler will execute between each main program 
instruction. 

On most machines the CPU will check for interrupts before performing the 
next instruction fetch. As long as it detects a pending interrupt it will service the 
interrupt before fetching the next instruction. This means it is possible to halt a 
program by continuously sending interrupts. On the other hand, it guarantees 
that an interrupt is serviced before any more main program code is executed. 

When an interrupt occurs the signal sets a register bit. When the CPU checks 
for pending interrupts it reads the register for set bits. Upon completing an 
interrupt handler, the appropriate bit in the register is cleared. 

How does the CPU decide which interrupt to service first? Each interrupt a 
chip can detect has a precedence, the chip services those interrupts with a 
higher precedence first. 

3.5 Specific Interrupts  

Microcontrollers vary widely in the types of interrupts they can detect. Some 
general types are widely available in one form or another. The only universal 
interrupt is RESET and some simple chips support no other interrupts. 
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3.5.1 RESET 

The RESET interrupt prompts the chip to behave as if the power has been 
cycled. It does not actually cycle the power to the chip. This means that the 
contents of volatile memory, typically data memory, can remain intact. The 
reset vector contains the address of the first instruction that will be executed 
by the CPU. 

You can write an initialization routine to be executed before any other program 
code which first checks specific locations in data memory for particular values 
and then loads values into those locations. This can be used to check if the 
RESET was cold, power cycled, or warm, power not cycled. Some compilers 
support a initialization function which is executed upon RESET before the 
main program.  

On most chips, RESET causes the CPU to halt execution immediately and 
restart itself. On some chips, RESET may finish the current instruction. Each 
microcontroller performs a series of actions when it detects a RESET. For 
example, when a RESET occurs on the Motorola MC65HC705C8 the 
following actions occur: 

1) Data direction registers are cleared 

2) Stack pointer is set to 0x00FF 

3) CCR I bit is set 

4) External interrupt latch is cleared 

5) STOP latch is cleared 

6) WAIT latch is cleared 

 

A RESET can occur because of a manual reset, a COP time out, low voltage, 
initial power on, or an attempt to execute an instruction from an illegal address. 

3.5.2 Software Interrupt/Trap  

Some chips that support interrupts provide an instruction in the instruction set 
which the programmer can use to halt program execution. This instruction 
name is different for different devices. 

The COP8SAA7 has a Software trap which occurs when the INTR instruction 
is placed in the instruction register. The software trap is used for unusual and 
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unknown errors. The Motorola MC68HC705C8 has a software interrupt 
executable instruction called SWI.  

3.5.3 IRQ  

IRQ interrupts are physical pins or ports on the chip which generate an 
interrupt when they are sent a signal. Some chips do not support IRQ type 
interrupts and those that do implement them in many different ways. The 
number of pins available for IRQs varies widely from chip to chip. 

The developer usually has the ability to configure the IRQ interrupts to detect 
signals in specific ways. For example, they can be made sensitive to a signal 
edge, a signal hold, or a signal fall. 

For example, the Microchip PIC17C42a has an INT external interrupt pin. The 
developer can set the interrupt trigger to be either the rising edge or falling edge 
by setting an appropriate register bit.  The INT interrupt can be disabled by 
clearing the appropriate control bit. 

3.5.4 TIMER 

A TIMER interrupt occurs when a timer overflow is detected. For example, In 
the Microchip PIC16C74 there is a TMR0 interrupt which is generated when 
the TMR0 8 bit timer overflows. An overflow occurs when the timer goes from 
1111 1111 to 0000 0000. The timer is usually incremented every instruction 
cycle.  

TIMER interrupts in general provide access to an external clock. This is useful 
in applications where timing is critical. For control applications, for example, it 
is important to sample input data at specific time intervals. This is usually 
accomplished with TIMER based interrupts. 

You can also use TIMER interrupts in other ways, depending upon your 
hardware capabilities. Some chips, such as the Microchip PIC16C74, have 
readable and writable timers which let you specify a certain duration of time. 
Each instruction cycle of the CPU counts from this time and when the counter 
overflows the TIMER interrupt fires. Other chips let you specify the number of 
cycles as an interval for the TIMER and it will fire every time the specified 
number of  cycles pass. 

The TIMER interrupt is most useful in building a watchdog or computer operating 
properly timer for devices which do not include one. First you configure the 
watchdog to tell it how long it can last without attention. Then, you provide 
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code in your program to touch the watchdog at regular intervals before the time 
period expires. If your program leaves the watchdog too long without attention, 
the configured time period passes with no touch instruction, the watchdog 
activates the RESET interrupt. 

This type of timer interrupt provides your program with an independent safety 
net. Since the watchdog timer depends only upon the clock signals to do its job, 
if your program ever fails the watchdog will realize that the computer is not 
operating properly and will activate a RESET. 

3.6 Power 

Most microcontrollers support 4.5 to 5.5 Volt operation. There are also many 
low voltage parts which are designed to work at 3 volts or less.  

3.6.1 Brownout 

Microcontrollers have an on-board circuit which provides brownout protection. 
A brownout occurs when the operating voltage falls below the defined 
brownout voltage. When a brownout occurs the device is reset and waits for the 
operating voltage to rise above the brownout voltage. 

3.6.2 Halt/Idle 

Individual microcontrollers have specific modes which stop the execution of 
the program without affecting the power to the microcontroller. In these 
modes less power is required and power consumption is reduced. Halt mode 
stops all activities and can be terminated by a reset or an interrupt. Idle mode 
stops most activities. The clock, watchdog, and idle timer remain active.  

3.7 Input and Output 

Input and output are lines or devices which carry information between the 
microcontroller and the outside world.  

3.7.1 Ports 

A port is a physical input/output connection. Most ports on 8 bit 
microcontrollers are 8 bits or less. Ports can be either input, output or 
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input/output. Often the port state is set with a direction register which 
determines if the port is input, output or input/output. When a port pin is an 
output it is a latched output. This means that when the pin is in a given state, 
set or unset, it will remain in that state until reset.  

Microcontrollers usually contain several ports. 

For example, the Microchip PIC16C74 has five ports called PORTA, PORTB, 
PORTC, PORTD and PORTE. PORTA is 6 bit latch which is configured as 
input or output using the register TRISA. PORTA can also be configured as 
analog or digital using the ADCON1 register. PORTB is an 8 bit bi-directional 
port with data direction register TRISB. 

The National Semiconductor COPSAA7 contains four bi-directional ports: 
PORTC, PORTG, PORTL and PORTF. Each bit can be configured as input, 
output or trisate. 

3.7.2 Serial Input and Output 

CAN  
Controlled Area Network was developed by Bosh and Intel. It is a multiplexed 
wiring scheme. 

I2C™ (Inter-Integrated Circuit bus) 
A two wire serial interface developed by Phillips. It is a multi-master, multi-
slave network interface with collision detection. Up to 128 devices can exist on 
the network. The two lines consist of the serial data line and the serial clock line 
which are both bidirectional.. 

It provides a communication link between integrated circuits. Every component 
hooked up to the bus has its own unique address. 

J1850 
J1850 is the SAE (Society of Automotive Engineers) standard. 

MICROWIRE PLUS (National Semiconductor) 
A serial synchronous bi-directional communications interface used on National 
Semiconductor devices. It is SPI compatible. It consists of an 8 bit serial shift 
register with serial data input serial data output and serial shift clock 
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SCI (Serial Communications Interface) 
A Serial Communications Interface is an asynchronous serial interface. It is an 
enhanced UART. The SCI has a transmitter and a receiver which are 
functionally independent but use the same data format and baud rate.  

SCI features standard nonreturn to zero format, error detection, simultaneous 
send and receive, 32 different baud rates, selectable word length, and four 
separate interrupt conditions. There are five registers: SCDAT (serial 
communication data register), SCCR1 (serial communication control register 1), 
SCCR2 (serial communication control register 2), SCSR (serial communication 
status register), and the baud rate register. 

SPI (Serial Peripheral Interface) 
A Serial Peripheral Interface is a three-wire synchronous serial port which 
allows several microcontrollers to be interconnected. In the configuration there 
must be at least one microcontroller master while the remaining 
microcontrollers can either be masters or slaves. 

SPI features four programmable master bit rates, programmable clock polarity 
and phase and end of transmission interrupt. The clock is not included in the 
data stream and must be provided as a separate signal. There are three registers, 
SPSR, SPCR and SPDR that allow for control, status and storage functions. 
There are four basic pins which have different names on different devices: 

"# Data out  
"# Data in 
"# SCK (Serial Clock) 
"# SS  (Slave Select) 

A SPI is a type of SSP. 

SSP (Synchronous Serial Port) 
The SSP does not require start and stop bits and operates at higher clock rates 
then asynchronous serial ports. 

UART 
A Universal Asynchronous Receiver Transmitter is a serial port adapter that 
receives and transmits serial data with each data character preceded by a start bit 
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and followed by a stop bit. There is sometimes a parity bit included. A UART is 
used mainly as a serial to parallel and parallel to serial converter. 

USART 
A Universal Synchronous/Asynchronous Receiver Transmitter is a serial port 
adapter used for synchronous or asynchronous serial communication. 

3.8 Analog to Digital Conversion 

It is often necessary to convert an external analog signal to a digital 
representation or to convert a digital signal to an analog signal.  

Successive Approximation Converter 
Most microcontrollers use a successive approximation A/D converter. The 
converter works with one bit at a time from the MSB (most-significant bit) and 
determines if the next step is higher or lower. This technique is slow and 
consumes a great deal of power. It is also cheap and has consistent conversion 
times. 

The Microchip PIC16C74 has an A/D converter module which features 8 
analog inputs. These 8 inputs are multiplexed into one sample-and-hold which 
is the input into the converter. 

Single Slope Converter 
Appears in National Semiconductor’s COP888EK. It includes an analog 
MUX/comparator/timer with input capture and constant current source. The 
conversion time varies greatly and is quite slow. It also has 14 to 16 bit 
accuracy. 

Flash converter 
Examines each level and decides what level the voltage is at. It is very fast, but 
draws a great deal of current and is not feasible beyond 10 bits. 
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3.9 Miscellaneous 

3.9.1 Digital Signal Processor 

A Digital Signal Processor (DSP) runs repetitive, math intensive algorithms.  

3.9.2 Clock Monitor 

The clock monitor watches the clock and determines if it is running too slow. It 
can activate a microcontroller reset. 

3.10 Devices 

3.10.1 Mask ROM 

ROM whose contents are set by masking during the manufacturing process.  

3.10.2 Windowed Parts 

A microcontroller with a window which allows for ROM contents to be erased. 

3.10.3 OTP 

OTP (One Time Programmable) devices are microcontrollers where once a 
program is written into the device it cannot be erased. 
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4. Programming Fundamentals 
It is necessary to understand some basic computer programming concepts 
before learning C programming. 

4.1 What is a Program? 

The most important thing to remember about computers is that they can do 
only what they are instructed to do. To accomplish a meaningful task on a 
computer, someone must give it exhaustive and very explicit instructions. A 
collection of such instructions is a called a program and the person who writes 
and revises these instructions is known as a programmer or developer. 

4.2 Number Systems 

There are several different number systems. We are used to the decimal number 
system which is of base 10. This means that it has ten digits and coefficients are 
multiplied by powers of 10. For example 456 is the same as 4(102) + 5(101) + 
6(100) = 400 + 50 + 6 = 456. 

Computers use the binary number system with base 2: it has two digits (0 and 1) 
and the coefficients are multiplied by powers of 2.  For example 110 is the same 
as 1(22) + 1(21) + 0(20) = 6. 

The hexadecimal number system is often used as it is easier to read than binary 
numbers. It is base 16 and uses 0-9 and A-F to represent values. 
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Base 10 Decimal Base 2 Binary Base 16 Hexadecimal 

0 0000 0 
1 0001 1 
2 0010 2 
3 0011 3 
4 0100 4 
5 0101 5 
6 0110 6 
7 0111 7 
8 1000 8 
9 1001 9 
10 1010 A 
11 1011 B 
12 1100 C 
13 1101 D 
14 1110 E 
15 1111 F 
16 0001 0000 10 
17 0001 0001 11 
100 0110 0100 64 
255 1111 1111 FF 
1024 0100 0000 0000 400 
65,535 1111 1111 1111 1111 FFFF 

Table 6: Binary, decimal and hexadecimal 

4.3 Binary Information 

When people read and write they use extremely powerful and flexible coding 
systems called alphabets. Computers, however, can only handle information 
written in the most simple coding system possible — binary notation. The 
binary alphabet has only two components: 1 and 0. 
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 A computer’s memory consists of a long series of switches known as bits. 
These switches can exist in only two states; therefore, they are well suited to 
the binary alphabet. At any given time a single bit in computer memory can 
represent either 1 or 0. A bit containing 1 is referred to as being set while a 
bit containing a 0 is referred to as being unset or clear. Anything that a 
computer reads, writes, or executes must be encoded as a series of set and 
unset bits. 

The following diagram shows the relationship between data value and data 
storage: 

 

Bit Number 7 6 5 4 3 2 1 0  
Bit Values 1 1 0 1 1 1 0 1 Address 0x00 
          
Signal          

Figure 9: Data storage VS. data value 

In the example the data is stored at the address 00 Hex. The data stored at that 
location has the value 1101 1101 binary or DD hexadecimal. 

One bit in computer memory can record either 0 or 1 because it contains a 
single binary digit which can exist in only two states. Two bits read in sequence, 
however, can record four possible numbers: 0, 1, 2, and 3 because two bits can 
exist in the states 00, 01, 10 and 11. As with decimal notation, the first digit 
records the multiples of one included in the number. The second digit records 
the multiples of two since the computer only has two digits available. Adding a 
third digit allows for the encoding of multiples of 4. 

Bits are often grouped in sets. 8 bits make 1 byte, while 16 bits make one word. 
Standard terminology refers to 210 (1024) bytes as a kilobyte. 

A programmer can give the computer information and instructions using long 
strings of 1’s and 0’s. However, this process would be very time consuming and 
prone to error. To resolve these problems programmers have developed 
languages in which to write programs. Languages help the programmer by 
making the job of programming a computer faster, more efficient, and more 
reliable. 
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4.4 Memory Addressing  

Computer memory is divided up into addresses. Each address holds an 8 bit (or 
1 byte) value. The number of address lines determines the number of locations 
available. For example, the MC68HC05C8 can address 8192 bytes of memory. 
Sine each bit can hold one of two values (0 or 1) and 213 = 8192 we know that 
there are 13 address lines. The first address will be the value 0 0000 0000 0000 
(0x0000) and the last address will be the value 1 1111 1111 1111 (0x1FFF). 

Microcontrollers have different addressing modes which allow them to access 
locations in memory as quickly as possible. For example, the first 256 locations 
on the Motorola MC68HC705C8 can be accessed using direct addressing mode 
where the CPU assumes that the high byte of the address is 00000000. 

4.5 Machine Language 

Computers only understand one language: machine language. Each family of 
computers has its own machine language which can not be understood by any 
other family of computers. Any particular computer within a family may also 
use a slightly different dialect of the family language and may incorporate 
features not available to other members of the family. Any instructions for a 
specific computer must be given in its individual machine language. Machine 
language is a collection of binary numbers such as: 

00000000000001010101011110100110100010101010011010001111101
11100000010000000000011111111100011101010110000000000000010
10 

The hexadecimal equivalent is: 
000557A68AA68FBC0800FF8EAC000A 

4.6 Assembly Language 

Each microcontroller has its own assembly language or assembly language 
variation. Assembly language consists of mnemonic instructions and addressing 
modes where the instruction describes what to do and the addressing mode 
describes where to do it.  The following instructions are from the National 
Semiconductor COP888 assembly language: 
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Address Instruction Hex Explanation 

0005 LD B,#034 9F 34 Load B register with 34  
0007 SBIT 06,[B] 7E Set bit 6 of B register to 1 
000E IFBIT 06,[B] 76 If bit 6 of B register is 1 then execute 

next instruction 
0011 LD A,[B] AE Load Accumulator with contents of 

location referenced by B 
0012 IFNE A,#001 99 01 If the Accumulator is not equal to 1 

then execute next instruction 
0014 JP 00017 02 Jump to PC + 02 +1 (0017) 
0015 CLRA 64 Clear accumulator 
0000 JMPL 00005 AC 00 05 Jump to address 0005 

Table 7: Interpretation of assembly language 

8 bit microcontrollers usually use byte size instruction codes. Each instruction 
has two possible components: an opcode and an operand. The opcode is the 
function that the instruction performs while the operand is data used by the 
opcode. Neither opcodes nor operands are restricted to 1 byte. 

There are several different types of addressing modes. An addressing mode is 
simply the means by which an address is determined. Some common modes are 
immediate data, direct address, and indirect or indexed address. 

4.6.1 Assembler 

Assembly language programs are not directly executable, they must be 
translated to machine language. This translation is done using a program called 
an assembler. 

4.7 Instruction Sets 

Most microcontrollers use the CISC (Complex Instruction Set Computer) 
foundation. CISC is an architecture which handles complex instructions. If one 
complex instruction encapsulates several simple instructions, the time spent 
retrieving the instruction from memory was reduced. This is useful with 
sequential computing designs. 

Some microcontrollers are based upon a RISC (Reduced Instruction Set 
Computer) design. RISC is an architecture which handles simple instructions. 
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The processor can execute these instructions at a very high speed. RISC uses a  
technique called pipelining the processing of instructions can be overlapped. 
For example, one instruction can be read from memory while another is 
decoded and another is executed. Many RISC machines have a single 
instruction size and a small number of addressing modes. 

Some microcontrollers are called SISC (Specific Instruction Set Computer) 
machines. This is based on the fact that the instruction sets are designed 
specifically for control purposes. 

 Instructions Instruction 
Size 

Cycle Address Modes 

MC68HC705C8 58 8, 16 or 24 bit 2 to 11 10 

COP8SAA7 56 8, 16 or 24 bit  1 to 5 10 

PIC16C54 33 12 bit 1 or 2 3 

PIC16C74 35 14 bit 1 or 2 3 

Table 8: Instruction set comparisons 

4.8 The Development of Programming Languages 

Programming languages were originally developed to reduce program 
development time. Programming languages also increase the portability, 
readability and modifiability of programs.  For example a program written for 
the National Semiconductor COP8SAA7 in its assembly language will not run 
on the Motorola 68HC705C8, actually it may not run on other COP8 parts 
because of differences in the instruction set. If a program is written in C for the 
COP8SAA7 it can be ported to the 68HC705C8 with few changes. 

The following examples show the same C code compiled for the COP8SAA 
and the 68HC705C8. When a language such as C is used the program must 
simply be recompiled while an assembly language program must be completely 
rewritten.   

0034 0006                           bit b@0x34.6; 
0008                                char j; 
0005                                #define bit5 5 
0008 0005                           bit bj@&j.bit5; 
0008 0005                           bit bj1@j.bit5; 
                                    void main(void){ 
0005 9F 34     LD     B,#034             b=1; 
0007 7E        SBIT   06,[B] 
0008 BD 08 6D  RBIT   05,008             bj=0; 
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000B BD 08 7D  SBIT   05,008             bj1=1; 
000E 76        IFBIT  06,[B]             if (b==1) 
000F 6E        RBIT   06,[B]             b=0; 
000F 6E        RBIT   06,[B] 
0010 57        LD     B,#08              b=(j==1)?0:1; 
0011 AE        LD     A,[B] 
0012 99 01     IFNE   A,#001 
0014 02        JP     00017 
0015 64        CLRA 
0016 02        JP     00019 
0017 98 01     LD     A,#001 
0019 9F 34     LD     B,#034 
001B 92 00     IFEQ   A,#000 
001D 02        JP     00020 
001E 7E        SBIT   06,[B] 
001F 01        JP     00021 
0020 6E        RBIT   06,[B] 
0021 8E        RET                  } 

Example 4: A typical assembly language program for the COP8SAA 

0034 0006                         bit b@0x34.6; 
0050                              char j; 
0005                              #define bit5 5 
0050 0005                         bit bj@&j.bit5; 
0050 0005                         bit bj1@j.bit5; 
                                  void main(void){ 
0200 1C 34     BSET   6,$34            b=1; 
0202 1B 50     BCLR   5,$50            bj=0; 
0204 1A 50     BSET   5,$50            bj1=1; 
0206 0D 34 02  BRCLR  6,$34,$020B      if (b==1) 
0209 1D 34     BCLR   6,$34            b=0; 
020B B6 50     LDA    $50              b=(j==1)?0:1 
020D A1 01     CMP    #$01 
020F 26 03     BNE    $0214 
0211 4F        CLRA 
0212 20 02     BRA    $0216 
0214 A6 01     LDA    #$01 
0216 4D        TSTA 
0217 26 04     BNE    $021D 
0219 1D 34     BCLR   6,$34 
021B 20 02     BRA    $021F 
021D 1C 34     BSET   6,$34 
021F 81        RTS                } 

Example 5: Program in Example 4 compiled for the 68HC705C8 

One of the most important tools that programmers developed to deal with new 
high level languages is the language compiler. 
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4.9 Compilers 

Compilers translate high level programming language instructions into machine 
language. They perform the same task for high level languages that an assembler 
performs for assembly language, translating program instructions from a 
language such as C to an equivalent set of instructions in machine language. 
This translation does not happen in a single step – three different components 
are responsible for changing C instructions into their machine language 
equivalents. These three components are: 

1) Preprocessor 
2) Compiler 
3) Linker 

4.9.1 The Preprocessor  

 A program first passes through the C preprocessor. The preprocessor goes 
through a program and prepares it to be read by the compiler. The 
preprocessor includes the contents of other programmer specified files, 
manipulates the program text, and passes on instructions about the particular 
computer for which the compiler will be translating. 

4.9.2 The Compiler 

The compiler translates a program into an intermediate form containing both 
machine code and information about the program’s contents. The compiler is 
the second component to handle your program. The compiler has the most 
important job: digesting and translating the program into a language readable by 
the destination computer. 

Many compilers operate in different passes through the code. There are often 
passes specifically to handle optimizations of code which will reduce the size of 
the machine code generated. 

4.9.3 The Linker 

When programs were written in the past often the development computer was 
not powerful enough to hold the entire program being developed in memory at 
one time. Historically, programs had to be divided into separate modules where 
each module would be compiled into object code and a linker would link the 



 Cross Development 

51 

object modules together. Our development machines today are very powerful 
and the use of a linker is no longer absolutely necessary. 

Many implementations of C provide function libraries which have been pre-
compiled for a particular computer. These functions serve common program 
needs such as serial port support, input/output, and description of the 
destination computer. Functions within libraries are usually either linked with 
modules which use them or included directly by the compiler if the compiler 
supports library function inclusion.  

When your program has been pre-processed, compiled and linked, the 
destination computer will be able to read and execute your program. 

4.10 Cross Development 

A cross compiler runs on one type of computer and produces machine code for 
a different type of computer. While many 8 bit embedded microcontrollers can 
support sophisticated and extremely useful programs, they are not powerful 
enough to support the resource needs of a C development environment. How 
does a developer create and compile programs for an 8 bit microcontroller? By 
using a cross compiler. 

4.10.1 Cross compiler 

An embedded systems developer writes and compiles programs on a larger 
computer which can support a C development environment. The compiler used 
does not translate to the machine language of the development computer, it 
produces a version of the program in the machine language of the 8 bit 
microcontroller. A compiler that runs on one type of computer and provides a 
translation for a different type of computer is called a cross-platform 
compiler or cross-compiler. 
The object code formats generated by a cross-compiler are based on the target 
device. For example, a compiler for the Motorola MC68HC705C8 could 
generate an S-record file for its object code. 

4.10.2 Cross development tools 

After a program is compiled it must be tested using a simulator or an 
emulator. After testing the developer uses a special machine called a 
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programmer to imprint the translated program into the memory of the 8 bit 
microcontroller. 

Simulator 
A simulator is a software program which allows a developer to run a program 
designed for one type of machine (the target machine) on another (the 
development machine). The simulator simulates the running conditions of the 
target machine on the development machine.  

Using a simulator you can step through your code while the program is running. 
You can change parts of your code in order to experiment with different 
solutions to a programming problem. Simulators do not support real interrupts 
or devices. 

An in-circuit simulator includes a hardware device which can be connected to 
your development system to behave like the target microcontroller. The in-
circuit simulator has all the functionality of the software simulator while also 
supporting the emulation of the microcontroller’s I/O capabilities. 

Emulator 
An emulator or in-circuit emulator is a hardware device which behaves like a 
target machine. It is often called a real time tool because it can react to events as 
the target microcontroller would. Emulators are often packaged with monitor 
programs which allow developers to examine registers and memory locations 
and set breakpoints. 

4.10.3 Embedded Development Cycle 
The development process for embedded software follows a cycle: 

1. Problem specification 

2. Tool/chip selection 

3. Software plan 

4. Device plan 

5. Code/debug 

6. Test 

7. Integrate 
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Problem Specification 
The problem specification is a statement of the problem that your program will 
solve without considering any possible solutions. The main consideration is 
explaining in detail what the program will do.  

Once the specification of the problem is complete you must examine the 
system as a whole. At this point you will consider specific needs such as those 
of interrupt driven or timing-critical systems. 

For example, if the problem is to design a home thermostat the problem 
specification should examine the functions needed for the thermostat. These 
function may include reading the temperature, displaying the temperature, 
turning on the heater, turning on the air conditioner, reading the time, and 
displaying the time. Based on these functions it is apparent that the thermostat 
will require hardware to sense temperature, a keypad, and a display. 

Tool/Chip Selection 
The type of application will often determine the device chosen. Needs based on 
memory size, speed and special feature availability will determine which device 
will be most appropriate. Issues such as cost and availability should also be 
investigated. 

The tools available will also impact a decision to develop with a certain device. 
It is essential to determine if the development decisions you have made are 
possible with the device you are considering. For example, if you wish to use C 
you must select a device for which there is a C language compiler. It is also 
useful to investigate the availability of emulators, simulators and debuggers. 

Software Plan 
The first step in the software plan is to select an algorithm which solves the 
problem specified in your problem specification. Various algorithms should be 
considered and compared in terms of code side, speed, difficulty, and ease of 
maintenance. 

Once a basic algorithm is chosen the overall problem should be broken down 
into smaller problems. The home thermostat project quite naturally breaks 
down into modules for each device and then each function of that device.  

For example, the thermostat may have a display to the LCD display module and 
a read from the keyboard module. 
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Device Plan 
The routines for hardware specific features should also be planned. These 
routines include:  

1) Set up the reset vector 

2) Set up the interrupt vectors 

3) Watch the stack (hardware or software) 

4) Interact with peripherals such as timers, serial ports, and A/D 
converters. 

5) Work with I/O ports 

Code/Debug 
The modules from the software plan stage are coded in the project language. 
The coded modules are compiled or assembled and all syntactic error are 
repaired.  

Debugging should consider issues such as: 

"# Syntactic correctness of the code 

"# Timing of the program 

Test 
Each module should be tested to ensure that it is functioning properly. This 
testing is done using simulators and/or emulators. It is also important to test 
the hardware you will be using. This is easily done by writing small programs 
which test the devices. 

Integrate 
The modules must be combined to create a functioning program. At this point 
is important to test routines which are designed to respond to specific 
conditions. These routines include interrupt service and watchdog support 
routines. The entire program should now be thoroughly tested.
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5. First Look at a C Program 
Traditionally, the first program a developer writes in the C language is one 
which displays the message Hello World! on the computer screen. This is 
a sensible beginning for traditional C platforms where conventional input and 
output are important and fundamental concepts.  

In the world of 8 bit microcontrollers device input and output play radically 
different roles. Programs rarely have access to keyboard input or screen output 
devices which are common in traditional C programming 3. 
The following introductory program is representative of microcontroller 
programming. The program tests to see if a button attached to a controller port 
has been pushed. If the button has been pushed, the program turns on an LED 
attached to the port, waits, and then turns it back off. 
#include <hc705c8.h>  
// #pragma portrw PortA @ 0x0A; is declared in header  
// #pragma portw  PortADir @ 0x8A; is declared in header 
#define INPUT  1 
#define OUTPUT 0 
#define ON 1 
#define OFF 0 
#define PUSHED 1 
 
void wait(registera);      //wait function prototype 
 
void main(void){ 
  PortADir.0 = OUTPUT; //set pin 0 for output (light) 
  PortADir.1 = INPUT;  //set pin 1 for input (button)  
  while (1){ // loop forever 
    if (PortA.1 == PUSHED){ 
      wait(1);   // is it a valid push? 
      if (PortA.1 == PUSHED){ 
    PortA.0 = ON;   // turn on light 
        wait(10);   // delay (light on) 
        PortA.0 = OFF;  // turn off light 
      }  
    }  
  }  
} //end main 

Example 6: A typical microcontroller program 

                                                 

3 Most C compilers for 8 bit microcontrollers do not use stdio libraries as these 
libraries provide functions for input and output rarely used on 8 bit machines. 
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It is not necessary to understand the specifics of the sample program at this 
point. It is more important that you become familiar with some of the basic 
concepts involved in C program development.  

The following sections provide a general explanation of the C program in 
Example 6. 

5.1 Program Comments 

A good programmer includes comments throughout a program. Comments 
help to explain what the code is doing at a particular point and often state what 
specific symbols or operations represent. 

C compilers use slash and asterisk combinations as comment delimiters. When 
the compiler encounters a slash immediately followed by an asterisk , /*, it 
treats every character following this pair as a comment until an asterisk 
immediately followed by a slash, */, is encountered. 

Most modern C compilers also accept C++ comment syntax. If the compiler 
reaches a slash immediately followed by another slash, //, in the source code it 
treats the rest of that line as a comment. The C++ convention is more readable 
and easier to debug because the effect of the comment syntax does not carry 
over from one line to the next as in traditional C.  

All comments in code examples provided  throughout this book use C++ style. 
If you have a compiler which does not support this comment syntax, you must 
replace every // with /* and place */ at the end of the comment. 

NOTE 
Always comment your code. Even if you are sure no other programmer will ever 
look at your code, a near impossibility, you will still need to understand it. You will 
often rework code months and even years after it was originally written. Comments 
drastically improve code readability. 

 

5.2 Preprocessor directives  

 Example 6 contains three preprocessor directives: #include, #define, 
and #pragma. Preprocessor directives are specific instructions given to the 
preprocessor. Preprocessor directives are always preceded by the # character 
which is referred to as a hash mark. These directives are used as follows: 
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#include <hc705c8.h> 
#include is one of the most commonly used preprocessor directives. When 
the preprocessor reaches this directive it looks for the file named in the 
brackets. In the example above the preprocessor searches for the file 
hc705c8.h which contains device specific specifications for the Motorola 
68HC705C8. 

If the file is found the preprocessor will replace the #include directive with 
the entire contents of the file. If the file is not found the preprocessor will halt 
and give an error. 

In the example the #include directive is used to include the contents of a 
header file. By convention, C language header files have the .h extension. 
Header files contain information which is used by several different sections, or 
modules, of a C program as they contain preprocessor directives and 
predefined values which help to describe the resources and capabilities of a 
specific target microcontroller. 

#define ON 1 
#define OFF 0 

#define is another commonly used preprocessor directive which is used to 
define symbolic constants. Programs often use a constant number or value 
many times. Instead of typing in the actual number or value throughout the 
program, you can define a symbol which represents the value. When the 
preprocessor reaches a #define directive, it will replace all the occurrences of 
the symbol name in your program with the associated constant. Constants are 
useful for two specific reasons: 

1) Increasing program readability. A symbolic name is more descriptive 
than a number. For instance, the name ON is easier to understand than the 
value 1. Using symbolic constants enhances the readability of your 
programs and makes them easier to test, debug and modify. 

2) Increasing program modifiability. Since the symbolic constant value is 
defined in a single place, only one change is necessary if you wish to modify 
the value: in the #define statement. Without the #define statement it 
would be necessary to search through the entire program for every place 
the value is used and change each one individually. 

In the statements #define ON 1 and #define OFF 0, the symbols ON 
and OFF are assigned the values 1 and 0 respectively. Everywhere the 



First Look at a C Program 

58 

preprocessor sees the symbol ON it will replace it with the constant 1; where it 
sees OFF it will replace it with the constant 0. 

#pragma portrw PortA     @ 0x0A;  
#pragma portw  PortADir  @ 0x8A;  

The preprocessor handles #pragma directives in a slightly different fashion 
than other preprocessor directives. #pragma directives instruct the compiler 
to behave in a certain way based on the description of the hardware resources 
of the target computer. #pragma statements are most often used in header 
files which provide the hardware specifications for a particular device. 

#pragma port directives, for example, describe the ports available on the 
target computer. The description includes details on port location, whether they 
are read, write or read/write and the names the program uses to access ports. 

In the excerpt from Example 6 shown above, the compiler is informed that 
two ports are available. The name PortA refers to physical port A’s data 
register, which is available for reading and writing and is located at address 
0x0A. The name PortADir refers to physical port A’s data direction register, 
which is available for writing only and is located at address 0x8A. 

5.3 C Functions 

C programs are built from functions. Functions typically accept data as input, 
manipulate data and return the resulting value. For example, you could write a 
C function that would take two numbers, add them together and return the sum 
as the result. 

5.3.1 The main( ) function 

When a computer runs a C program, how does it know where the program 
starts? All C programs must have one function called main()which is always 
the first function executed. 

Notice the notation for main(). You specify a function name by following 
the name with parentheses. This is the notation used by the C compiler to 
determine when it has encountered a function. As long as the name is not a 
recognised C command, called a reserved word, the compiler will assume it is a 
function if it is immediately followed by a pair of parentheses. The parentheses 
may also surround a list of input arguments for the function. 
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void main(void){ 
//function statements 

} 
Example 7: Syntax for the main( ) function 

Example 7 is the definition for the main() function in Example 6. All the 
statements that fall between the two braces, {}, have been omitted for 
example purposes. 

The first use of the term void, prior to the word main, indicates to the 
compiler that this main() function does not return any value at all. The 
second use of the term void, between the parentheses, indicates to the 
compiler that this main() function is not sent any data in the form of 
arguments. 

Braces must surround all statements which form the body of a function. Even 
functions with no statements in their body require the braces – the braces after 
a function header indicate to the compiler that you are providing the definition 
of a function. 

5.3.2 Calling a Function 

The main() function can execute code from other functions. This is referred 
to as calling another function. The calling function must know about the called 
function in order to execute its code. A function knows about another function 
in two ways: 

1) The entire definition of the called function is positioned earlier in the 
source file than the calling function. 

2) A function prototype of the called function is included before the calling 
function in the same source file. 

A function prototype describes details of the requirements of a function so 
that any program code that calls that function will know what information the 
called function requires. The following is a typical function prototype: 
void wait(registera); 

The example above is a function prototype for a function called wait(). This 
function is preceded by the return value void; therefore, it does not return a 
value. Unlike main(), the wait() function does expect to receive an 
argument, called a parameter. The type of the parameter (registera) is 
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important. It indicates the type of value the parameter will hold – a value of 
type registera.  

5.4 The Function Body 

Every function definition has a function header. A function header describes 
what type of value the function returns, the name of the function, and what 
input arguments it expects. The body of the function follows the function 
header. The function body contains a set of statements between braces which 
are executed when the function is called. There are several different types of C 
statements. 

5.4.1 The Assignment Statement 

One of the simplest and most common statements in C is the assignment 
statement. An assignment statement takes the value of the expression on the 
right of the equal sign and assigns it to the symbol on the left side of the equal 
sign. For example: 

PortADir.0 = OUTPUT; 
PortADir.1 = INPUT; 

Example 8: Using the C assignment statement 

In Example 8 the symbols PortADir.0 and PortADir.1 refer to the 
first two bits of the port associated with the name PortADir. 

The first statement assigns the numeric value of the expression on the right of 
the equal sign to bit 0 of PortADir, which represents the port A direction 
register. From the #define directives we know that OUTPUT is really a 
symbolic constant associated with the value 0. Therefore, this assignment 
statement clears bit 0 of the port A direction register. 

By contrast, the second assignment statement sets bit 1 of the port A direction 
register. How? Recall that INPUT is a symbolic constant associated with the 
value 1 in a #define statement. 

5.4.2 Control statements 

Control statements allow decisions to be made to determine which statements 
are executed and how often. For example, suppose you need to write a set of 
instructions for making coffee in a coffee maker. The amount of water you 



 The Function Body 

61 

pour into the coffee maker depends upon the number of cups you want to 
make. At some point in your instructions, you need to allow the person 
following them to make a decision about the number of cups needed and, 
therefore, the amount of water needed. You might say: “if you want to make 4 
cups of coffee, then use 5 cups of water”. 

In C decisions are made using control statements. Control statements can select 
between two or more paths of execution and repeat a set of statements a given 
number of times. Some common control statements are:  

while 
while(1){ 

// statements 
} 

The while() control statement instructs the computer to repeat a set of 
instructions (loop) as long as a condition is valid.  The condition is an 
expression placed in the brackets which follow the while statement. C 
considers any condition which does not evaluate to 0 to be true and any 
condition which does evaluate to 0 to be false. 

In Example 6 the condition is the integer 1b (binary), which is interpreted as 
true. Therefore, once the computer begins to execute statements inside the 
braces of the while loop, it will not terminate until the computer 
malfunctions or is turned off. This kind of loop is often called an infinite loop.  

In traditional C programming, an infinite loop is usually avoided. However, it is 
often used in embedded systems programming. An embedded controller 
typically executes a single program “infinitely”. Only when the controller is 
reset or turned off will the loop terminate. 

if 
if (PortA.1 == PUSHED){ 
 PortA.0 = ON; 
} 

Example 9: The if statement syntax 

The if() statement provides the ability to make decisions. If the if 
statement condition is true then the computer executes the statements in the 
if body. In Example 9, the value of PortA.1 is compared with the value of 
PUSHED, if data bit number 1 is set (has the value 1) then the program will 
execute any statements in the if body.  The body statement sets port A data 
bit number 0 by assigning it the value of ON. 
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while (1){ 
 if (PortA.1 == PUSHED){ 
  PortA.0 = ON; 
 } 
} 

Example 10: Nesting if and while statements 

When the if decision is placed inside a while loop, the program will test bit 
1 in PortA regularly. Assume a button is attached to pin 1 of port A and an 
LED to pin 0 of PortA. We have written a small control program which will 
continually test the button attached to pin 1. When the button is pushed, bit 1 
of PortA will be set. When bit 1 is set and the if statement is executed, bit 0 is 
set. The LED attached to PortA pin 0 will be set to 1 and will light up. 

5.4.3 Calling Functions 

A program can delegate a task by calling another function. Once the program 
turns on the LED in Example 10 it never turns it off. Remember, the while 
loop is an infinite loop. How can we solve this problem? 

One solution is to write a function called wait()which creates a delay and 
then turn the LED off. Consider the following example code fragment: 
 
while (1) 
{ 
 if (PortA.1 = PUSHED) 
 { 
  PortA.0 = ON; 
  wait(10); \\ wait ten seconds 
  PortA.0 = OFF; 
 } 
} 

Example 11: Calling one function from another 

When the wait() function is used and the button is pushed, the program 
turns the LED on by setting bit 0 of PortA. The wait() function causes a 
delay of ten seconds. After the wait function has finished and ten seconds have 
passed, the program turns off the LED by clearing bit 0 of  PortA. 

5.5 The Embedded Difference 

Several things make the program in Example 6 typical of embedded systems 
programs in C. 
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5.5.1 Device Knowledge 

Most embedded systems programs include a header file which describes the 
target processor. These header files contain descriptions of reset vectors, ROM 
and RAM size and location, register names and locations, port names and 
locations, register bit definitions and macro definitions. Most compiler 
companies will provide header files for devices supported by their compilers. 

Another important aspect of device knowledge is the limits of the device for 
which the program is written. For example, a certain device may have very 
limited memory resources and great care must be taken in developing programs 
which use memory frugally. Along with issues of size comes issues of speed. 
Different devices run at different speeds and use different techniques to 
synchronise with peripherals. It is essential that you understand device timing 
for any embedded systems application. 

5.5.2 Special Data Types and Data Access 

Embedded systems developers require direct access to registers such as the 
accumulator. In Example 6 the wait() function is called with an argument 
of type registera. This is a special type which represents the accumulator.  

Embedded developers are much closer to their target hardware then other 
programmers. They often access and control the basic hardware of the device 
they are programming.  

5.5.3 Program Flow 

The previous section mentioned the regular use of the infinite loop 
while(1). Embedded developers often use program control statements 
which are avoided by other programmers. For example, the goto statement is 
used regularly by embedded developers and is often condemned by other 
programmers. 

5.5.4 Combining C and Assembly Language 

Many developers prefer to write some code segments in assembly language for 
reasons of code efficiency or while converting a program from assembly 
language to C. Most compilers for 8 bit microcontrollers allow the inclusion of 
inline assembly, assembly language in a C program. 
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The following two definitions of the wait() function show the function 
written in C and the equivalent function in Motorola 68HC705C8 assembly 
language. 
//C function  
void wait(registera delay){ 
 while (--delay);    
} 
 
//function with inline assembly 
void wait(registera){ 
 char temp, time; 
// ocap_low and Ocap_hi are the output compare register 
//this register is compared with the counter and the ocf  
//bit is set (bit 6 of tim_stat) 
#asm 
    STA time ;store A to time 
    LDA #$A0 ;load A with A0 
    ADD ocap_low ;add ocap_low and A 
    STA temp ;store A to temp 
    LDA #$25 ;load A with 25 
    ADC ocap_hi ;carry + ocap_hi + accumulator 
    STA ocap_hi ;store A to ocap_hi 
    LDA temp ;load temp to accumulator 
    STA ocap_low  ;store a to ocap_lo 
LOOP    BRCLR 6,tim_stat,LOOP ;branch if OCF is clear 
    LDA ocap_low ;load ocap_lo to A 
    DEC time ;subtact 1 from time 
    BNE LOOP ;branch if Z is clear 
#endasm 
} 

Example 12: C functions containing inline assembly language 

5.5.5 Mechanical Knowledge 

Techniques used in an embedded system program are often based upon 
knowledge of specific device or peripheral operation. For example, Example 6 
calls the wait() function with a value of 1 after it has detected that the 
button is pushed and then checks to see if the button is still pushed. The code 
is written in this manner to deal with the issue of contact bounce.  

When a button is pressed it “bounces” which means that it is read as several 
pushes instead of just one. It is necessary to include debouncer support in order 
to ensure that a real push has occurred and not a bounce. The wait() function 
creates a delay before the button is checked again. If the button is no longer in 
a pushed state then the push is interpreted as a bounce and the program waits 
for a real push. 
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6. C Program Structure 
The previous section described some typical features of a very simple program. 
In this section we will examine in greater detail the building blocks of the C 
language. 

A C program is built from three components: 

1) Directives are directives handled directly by the preprocessor 

2) Declarations are instructions for the compiler to record the type 
and associated memory locations of symbols 

3) Statements are the executable instructions in a program 

6.1 C Preprocessor Directives  

The simple C program shown in Example 6 in the previous section introduced 
several preprocessor directives: 

"# #include directives include the contents of another file 

"# #define directives define symbolic constants 

"# #pragma directives describe details of the target hardware 

Section 13, The C Preprocessor, provides a detailed explanation of the 
preprocessor. 

6.2 Identifier Declaration 

Declarations define the name and type of identifiers used in your program. One 
benefit of programming in a high level language is the ability to construct 
generic groups of instructions, called functions, to perform tasks whose steps 
are not dependant upon specific values. For example, you can write  
instructions to add together two numbers without knowing the values of the 
numbers. How can this be done? Through the use of identifiers. 

An identifier can either represent a value, called a variable, or a group of 
instructions, called a function. C identifiers represent  addresses in computer 
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memory. At a given memory location the computer can store a value, or a 
group of program instructions.  

6.2.1 Identifiers in Memory 

The compiler allocates memory for all identifiers. As the compiler reads a 
program, it records all identifier names in a symbol table. The compiler uses the 
symbol table internally as a reference to keep track of the identifiers: their name, 
type and the location in memory which they represent. 

When the compiler finishes translating a program into machine language, it will 
have replaced all the identifier names used in the program with instructions that 
refer to the memory addresses associated with these identifiers. 

6.2.2 Identifier names  

An identifier name can be any word beginning with a letter or underscore 
character. The rules for naming identifiers are quite straightforward. An 
identifier can be almost any word that begins with a letter or underscore 
character, followed by 0 or more letters, numbers or underscore characters. 

$$$$ An identifier can not be a C keyword 
The C language has keywords which the compiler reserves because they have 
special meaning in the language. For example, the word if is used to signify 
the beginning of a decision block. A keyword may not be used as an identifier 
name. Some standard keywords in C are: 
auto default if short union 
break do int signed unsigned 
case else long static void 
char enum main struct volatile 
const extern pointer switch  
continue for return typedef  

Example 13: Common C keywords 

Compilers that provide special enhancements or extensions to the language will 
add keywords to this list, so you must check the documentation for your 
particular compiler to find out what other words not to use for identifier 
names. 
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$$$$ Identifiers only have certain significant characters 
Most compilers support identifier names of at least 31 characters in length. This 
allows you to use precise and meaningful names for variable and function 
names. However, to conserve memory a compiler will often only consider some 
characters in an identifier name as significant. This means that two identifiers 
which may seem different are treated as the same symbol by the compiler. For 
example, a compiler which only considered the first 5 characters of an identifier 
as significant would treat the following two identifiers as if they were the same 
symbol: 

PortADir 
PortA 

Notice that even though the two identifiers are different words, the first five 
significant characters are identical. 

6.2.3 Variable Data Identifiers 

Identifiers which represent variable data values, called variables, require 
portions of memory which can be altered during the execution of the program. 
The compiler will allocate a block of its data memory space, usually in RAM, 
for each variable identifier. 

For example, the declaration int currentTemperature; for the 
variable currentTemperature will cause the compiler to allocate a single 
byte of RAM. 

The keyword int in the variable declaration tells the compiler that 
currentTemperature will contain an integer value and will require a 
single byte of RAM to contain this value. 

6.2.4 Constant Data Identifiers 

Identifiers which represent constant data values are allocated from computer 
program memory space. Identifiers which represent constant data values do not 
require alterable memory: once the value of a constant has been written in 
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memory it need never change. Therefore, the compiler will allocate a block of 
its program memory space, usually in ROM, for each of these identifiers4. 

To declare a constant data value, use a declaration such as: 
const int maximumTemperature = 30; 

This declares a variable called maximumTemperature and sets its initial 
value to 30. The keyword const tells the compiler that the identifier is a 
constant and that a single byte in ROM should be reserved to contain the value 
30. When the identifier maximumTemperature is used in the program it 
refers to the memory location in ROM which contains the value 30. 

6.2.5 Function Identifiers 

Function identifiers are not altered during program execution. Once the value 
of a function has been written in the computer’s memory it need never change. 

When a function is defined, the compiler places the program instructions 
associated with the function into ROM. What happens to the local variables 
used in a function’s body of statements? The compiler will write in the data 
memory addresses where local variable values will be stored in RAM when the 
program runs. 

6.3 Statements 

When a program runs it executes program statements. Declarations describe the 
memory locations which statements can use to store and manipulate values. 

The most frequently used statement in any programming language is the 
assignment statement. C provides many different ways to construct an 
assignment statement; however, the following example shows the simplest way: 

currentTemperature = 20;   

The compiler will generate an instruction to store the value 20 in the RAM 
memory location set aside for the currentTemperature variable. 

                                                 

4 This is not always the case. However, you can safely assume that all C constant 
values are stored in machine program memory space. 
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6.3.1 The Semicolon Statement Terminator 

All statements in C must end with a semicolon. C uses the semicolon as a 
statement terminator5. One of the most common errors in C programming is 
an extra, missing or misplaced semicolon. If you leave out a semicolon the C 
compiler will not know where a statement should end. 

For example, suppose you wrote the following two statements. The compiler 
would produce an error. Why? 

currentTemperature = 20 
currentTemperature = 25; 

Forgetting the semicolon at the end of the first line forces the compiler to read 
both lines as one statement instead of two. According to the compiler you have 
written the following instruction: 

currentTemperature = 20 currentTemperature = 25; 

Notice that the C compiler does not care about white space between tokens as 
it reads through your program. White space includes space, tab and end-of-line 
characters. On some computers the end of line will be a single linefeed 
character, while on others it will be a linefeed and carriage return together. C 
compilers ignore both carriage returns and linefeeds. 

6.3.2 Combining Statements in a Block  

When you write a C function you must include function statements as part of 
the function definition. Statements belonging to a function are indicated by 
surrounding them with braces which immediately follow the function header. 
For example, Example 6 in the previous section has braces surrounding all the 
statements in the main() function. 

You may create statement blocks at other times in your program. For example, 
notice the braces after the while and if statements: 
while (1){   // this brace begins the block for while 
 if (PortA.1 = 1){   // this brace begins the if block  
  PortA.0 = 1; 
  wait(10); 
  PortA.0 = 0; 
 }   // this brace closes the block for if 

                                                 

5 Unlike languages PASCAL-like where the semicolon is used as a statement 
separator.  
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}   // this brace closes the block for while 
Example 14: Using braces to delineate a block 

The general format for the while statement looks like: 
while (condition) statement; 

However, since you can substitute a statement block anywhere a single 
statement can occur, the most commonly used form of the while statement 
looks like: 

while (condition){ 
 statements 
} 

Example 15: The while loop 

It is good programming practice to use braces whenever you use a loop or 
conditional construct such as while and if, even with a single statement 
block. The braces ensure that anyone reading your program code can tell exactly 
which statements belong to the while or if. 
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7. Basic Data Types 
It is easy to see how the computer stores binary values in memory as that is the 
manner in which its memory is structured. We have also seen how the 
computer stores other types of numbers, such as hexadecimal and decimal, by 
converting them to binary form. This section examines how other types of data 
can be used. 

7.1 The ASCII Character Set 

A computer can store a number in its memory. What about a character? People 
use alphabets to encode linguistic information while computers must use binary 
notation. To resolve this problem, computer programmers have settled on 
encoding schemes for representing characters with numbers such as ASCII 
(American Standard Code for Information Interchange) encoding. In the ASCII 
character set each character is associated with an integer value. When the 
computer needs to store a character it uses the ASCII integer value associated 
with that character and stores the number in binary notation. 

7.2 Data types 

Data types act as filters between your program and computer memory. Data 
types in C provide rules for the storage and retrieval of information from 
computer memory. C data types also provide a set of rules for acceptable data 
manipulation.  

The primary distinguishing characteristic of a data type is its size. The size of a 
data type indicates the amount of memory the computer must reserve for a 
value of that type. For example, on 8 bit microcontrollers the int data type 
(used for storing integer values) is a single byte in size6 while a long or long 
int data type is two bytes in size. When the compiler translates a program it 
must write the instructions to account for this size difference. The computer 

                                                 

6 The size of the int data type in C is the same as the amount of information the 
computer can process. Since 8 bit microcontrollers work with a byte at a time the size 
for int is 1 byte (or 8 bits). On most modern computers int varies from 24 bits to 64 
bits. 
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will know to set aside a single byte for all the int values in your program and 
two bytes for all the long values. 

7.3 Variable Data Types 

When you declare an identifier used in your program, either as a variable or a 
function, you specify a data type as part of the declaration. The compiler will 
allocate the appropriate amount of computer memory for use with each 
identifier.  

It is possible to declare a number of variables of the same type in the same 
declaration by including a list of identifier names separated by commas. Good 
programmers will most often use this method for declaring a group of variables 
that serve a similar function within the program. A typical case is a group of 
counters the programmer will use to regulate the control of program flow 
through loops: 

int  currentTemperature; 
char tempScaleUsed; 
long TempDifference; 
int count1, count2, count3;  

Example 16: Declaring variable types 

A declaration can also be used to ensure that a variable will be assigned a certain 
value when it is allocated. When this is done the compiler allocates the 
appropriate space for the variable and immediately assigns a value to that 
memory location, for example: int currentTemperature = 20; 
allocates 1 byte for the variable currentTemperature and assigns it the 
value 20. This is called initializing the variable.  

Initialization ensures that a variable contains a known value when the computer 
executes the first statement which uses that variable. If variables are not 
initialized in their declarations, their values are unknown until they are 
initialized. 

7.3.1 Variable Data Type Memory Allocation 

When the compiler comes across a variable declaration it checks that the 
variable has not previously been declared and then allocates an appropriately 
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sized block of RAM. For example, an int variable will require a single word (8 
bits) of RAM or data memory7. 

When the compiler allocates memory for a variable it decides where to place the 
variable value based on the existing entries in its symbol table. Since the 
compiler cannot know what value lies at the address allocated for a particular 
variable at compile-time, you can not depend upon a specific value for a 
variable the first time it is used. 

Compile-time is the point at which the compiler translates a program into 
machine code. Run-time indicates the point at which the machine code is 
executed on the host computer. It is useful to remember that compilers have 
little or no knowledge about a machine’s internal state at run-time. 

Declarations that initialise variables are very useful – they ensure that you can 
predict what a variable memory location will contain at run-time. When the 
compiler reads a declaration which also initializes a variable it first allocates an 
appropriate block of memory, then immediately loads the appropriate value into 
that location. 

Please note that variable declarations which contain an initialization will 
automatically generate machine code to place a value at the address allocated for 
the variable. Normal variable declarations do not generate any code because the 
machine code contains the address allocated for such a variable. This is not  the 
case for either global variables or static local variables – if they are not initialized 
in their declaration the compiler will initialize them by setting their initial values 
to 0. The compiler will produce machine instructions to load the 0 value into 
the appropriate addresses. 

7.3.2 Variable Scope 

Not all parts of a program recognize declared variables. The visibility of a 
declared variable is called the variable’s scope. If a portion of a program lies 
outside a variable’s scope then the compiler will give an error if you refer to the 
variable in that portion. The scope of a variable includes the locations in a 
program where the variable is a recognized and meaningful symbol. Outside 
that scope the variable is an unknown or undefined symbol. 

                                                 

7 The amount of memory required for an integer variable varies from computer to 
computer. 8 bit microcontrollers have a natural integer size of 8 bits. 
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7.3.3 Global Scope 

If you declare a variable outside all statement blocks, the scope of the variable 
reaches from its declaration point to the end of the  source file. Variables 
declared in this manner are called global variables because they can be used by 
any program code which comes after them in the same source file. 

 A variable declared outside a statement block can be accessed by any statement 
in your program by declaring the variable in a certain way. In order for a 
statement block or separate program file to access to such a variable, it must be 
declared as an external symbol. This means using the extern storage class 
modifier. For example, the following declaration tells the compiler to look for 
the original declaration of currentTemp in another file or below in the same 
file: extern int currentTemp;. 

The use of extern in a variable declaration is similar to the use of a function 
prototype – it informs the compiler of a variable’s name and data type so that it 
can be used before it is actually defined. As with function prototype 
declarations, the compiler does not allocate memory when it sees an extern 
variable declaration. 

7.3.4 Local Scope 

A variable declared inside a statement block has a scope from the declaration to 
the end of the statement block. Variables declared inside a statement block are 
called local variables, as they are accessible only to statements which follow 
them within the same statement block. Typically, programmers will declare 
variables whose scope is local to a specific function. The variable name and 
value will be defined only within that function and other functions cannot 
directly refer to the variable. 

7.3.5 Declaring Two Variables with the Same Name 

What happens if you have two functions which each contain local variables with 
the same name? Since a variable is local to its respective functions the compiler 
can distinguish between identically named variables. A variable name must be 
unique within its scope. 

What happens when scopes overlap? The most recently declared instance of a 
variable is used. If  you declare a global variable called temp outside all 
statement blocks and a local variable called temp inside your main() 
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function, the compiler gives the local variable precedence inside main(). 
While the computer executes statements inside main()’s scope (or statement 
block), temp will have the value and scope assigned to it as a local variable. 
When execution passes outside main()’s scope, temp will have the value and 
scope assigned to it as a global variable. 

7.3.6 Why Scope is Important 

Why is scope an important concept? It can provide tangible benefits to 
programmers. 

Since C is a function-oriented language where programs are built from 
collections of functions, variable scope promotes data abstraction. Variables 
declared inside a function remain local to that function only. Other functions in 
the program can use identical local variable names without creating conflicts. 
This means that you can use functions in your program and only know about 
the function interface. It is not necessary to see inside a function to use it in a 
program, it is only necessary to know what to pass in and what will be returned. 

Data abstraction allows a programmer to create a function which others can 
make use of the without seeing the function source code. This may sound 
dangerous but all C compilers take advantage of this principle. The standard 
library functions available with all C compilers depend upon data abstraction to 
be useful – programmers include standard library functions in their code all the 
time without worrying about potential variable name conflicts. 

7.4 Function Data Types 

A function data type allocates memory for the type of value the function 
returns. Function identifiers work differently than variables. When a function is 
defined a data type for the function must be included. Instead of indicating the 
amount of memory set aside for the function itself it indicates the amount of 
memory the compiler needs to reserve for the value returned by the function. 
For example, a function of type int returns a signed integer value and 8 bits 
are reserved for the return value. 

Suppose we have a function defined as follows: 
void wait(int timeInSeconds); 

The void keyword indicates to the compiler that the function will not return a 
value; therefore, no memory is allocated for a return value. 
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7.4.1 Function Parameter data types 

Parameter data types indicate the size of memory reserved for function 
parameter values. We define a data type for the parameter the function expects 
to be passed when it is called. The declaration of timeInSeconds as an 
int in the function declaration void wait(int timeInSeconds); 
tells the compiler to allocate a single byte to hold the parameter value when the 
function is called. 

The void keyword can also be used in a function parameter list: 
void main(void); 

This indicates to the compiler that the function does not expect to receive any 
parameter values when called. The compiler does not allocate any memory for 
void parameters. 

7.5 The Character Data Type  

The C language character data type, char, stores character values and is 
allocated 1 byte of memory space. Microcontrollers do not often manipulate 
alphabetic information, but sometimes it is required. The most common use of 
alphabetic information is reading input from a keyboard device, where each key 
typed is indicated by a character value. The char type uses a single byte of 
memory and stores the value of each character by storing its ASCII code. 

7.5.1 Assigning a character value 

When assigning a character value to an identifier you must place the character in 
single quotes. The quotes tell the compiler that the value is a character constant 
and not the name of another identifier. 

char firstLetter; 
firstLetter = 'a'; 
firstLetter = a; 

Example 17: Assigning a character value 

The first assignment in the example above places the ASCII value for the 
character a in the memory location assigned to the firstLetter variable. 
When the compiler reads the second assignment statement, it assumes that a is 
the name of a second variable. If no variable called a exists the compiler will 
generate an error. 
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7.5.2 ASCII Character Arrangement 

The order in which ASCII arranges its characters is called its collating 
sequence. The collating sequence is arranged so that the letters 'A' through 'Z' 
are in unbroken, ascending order with the decimal values 65-90, as are the 
letters 'a' through 'z' with the decimal values 97-122. In addition, the digits '0' 
through '9' are in unbroken, ascending order with the decimal values 60-71. The 
collating sequence allows for easy sorting of characters and the use of 
characters in simple arithmetic operations. 

7.5.3 Numeric Characters 

Numeric characters are not the same as integer values. It is important to 
understand that the character '3' is not the same as the integer 3. In fact, the 
ASCII decimal integer associated with the character '3' is 51. 

It is also important to remember that the upper case alphabetic characters have 
lower integers associated with them than do the lower case characters; 'A' and 
'a' are not the same character. A side effect of this property leads to logical 
comparisons of character values sorting capital letters before their lower case 
counterparts. The expression (A < a) will therefore evaluate to true. 

7.5.4 Escape Sequences 

You can specify any character in the ASCII set with a special escape sequence –
a backslash immediately followed by the octal or hexadecimal ASCII value for 
the character8. This supports character values that can not be typed using a 
keyboard. 

You can represent common special characters using escape sequences. For 
example, the escape sequence to produce the carriage return character, the 
character produced when someone types the e key, is \r. 

Escape sequences are useful for typing a literal character that the C compiler 
might interpret in another way. For example, to type a literal single quote 

                                                 

8 For historical reasons you can not specify a decimal ASCII value in an escape 
sequence. The general format for the escape sequence is as follows: 

\###   // octal value 
\x##   // hexadecimal value 
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character and avoid the compiler interpreting it as a character constant delimiter 
simply precede it with a backslash, \'. To assign the single-quote character to a 
char variable use the statement char singleQuote = '\'';. 

7.6 Integer Data Types  

Integer values can be stored as int, short or long data types. The default 
size for a number on most microcontrollers is 8 bits (a single byte). Therefore, 
the int data type for these computers requires a single byte of storage. Some 
compilers offer the ability to switch to using 16 bit integers by default. The size 
of int values usually equals the natural data size of the target computer. 

7.6.1 Integer Sign Bit 

C allows you to manipulate both positive and negative integer values and uses 
different methods to store each value in memory. Signed integer values have the 
left-most bit reserved for a sign bit. The state of the sign bit indicates whether 
the stored value should be treated as a positive or negative value.  

The existence of a sign bit means that there are only 7 bits left in which to store 
the actual value of the integer. An 8 bit signed int value can therefore range 
from -27 to 27-1. There is one more value available on the negative side of zero 
because zero itself counts as a positive value. 

7.6.2 The short Data Type 

On many traditional C platforms, the size of an int is more than 2 bytes. The 
short data type helps compensate for varying sizes of int. On platforms 
where an int is greater than 2 bytes, a short should be 2 bytes in size. 

On platforms where an int is 1 or 2 bytes in size —most microcontrollers— 
the short data type will typically occupy a single byte. This can be useful for 
embedded system programmers, especially on systems which provide a switch 
to “turn on” 16 bit int values. In these cases, you can maintain code 
portability by using short for those values that require 8 bits and long for 
values which require 16 bits. 

Like the int, the short data type uses a sign bit by default and can therefore 
contain negative numbers. 
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7.6.3 The long Data type 

Should your program need to manipulate values larger than an int, you can 
use the long data type. On most platforms the long data type reserves twice 
as much memory as the int data type. On 8 bit microcontrollers the long 
data type typically occupies 16 bits; this allows the representation of signed 
integers ranging from -215 to 215-1. 

It is important to note that long integer values are almost always stored in a 
memory block larger than the natural size for the computer. This means that 
the compiler must typically generate more machine instructions when a 
program uses long values. Programs will usually operate more quickly and 
efficiently if they only use 8 bit data types. 

7.6.4 Different Notations 

Integer data types usually hold values expressed in decimal notation. It is also 
possible to express an integer value in other notations. For example, the 
following declarations assign the same value to their respective variables 
expressed in different notations: All C compilers allow the expression of integer 
values in decimal, octal and hexadecimal notation. The ability to express values 
in binary notation is an enhancement to the language not available on all 
compilers. 

int decimalInt     = 32;  
// all octal values begin with 0 
int octalInt       = 040; 
// all hex values begin with 0x 
int hexadecimalInt = 0x20; 
// all binary values begin with 0b 
int binaryInt      = 0b00100000; 

Example 18: Octal, hex and binary notation 

Be careful to maintain the distinction between the value assigned to a variable, 
and the notation used to write that value. Remember that the computer uses a 
series of binary bits to store all the numbers your program uses regardless of 
the notation used when you write your program. 

7.7 Data Type Modifiers  

So far we have seen two general classes of simple data types: the character data 
type char and the integer data types int, short and long. By default, the 
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char type holds values from 0 to 255 and does not permit any negative values. 
However, int data types permits a range of both negative and positive values. 

The C language allows you to modify the default behaviour of simple data types 
and thereby produce char variables which can hold negative numbers and 
integer variables which permit only positive values.  

7.7.1 Signed and Unsigned 

The data type modifiers signed and unsigned allow you to specify 
whether you wish a variable to hold negative numbers or not. They instruct the 
compiler whether or not to include a sign bit in the allocated memory. 

By default, char variables are unsigned and cannot hold negative values. 
Also by default, integer variables (int, short and long) are signed and 
can hold negative values. Actually, the short and long types are not data 
types, they are data type modifiers. As a result, you often see declarations such 
as: 

short int myShortInt; 
long int myLongInt; 

Because int is the default data type in C you can simply declare variables as 
short and long. Some programmers insist that you should never take this 
short cut. However, some compilers actually implement the short and long 
as separate data types. 

Place modifiers before the data type in a variable declaration. For example: 
unsigned int myAge; 

7.7.2 Other Data Type Modifiers 

There are several data type modifiers available: 
auto const extern far 
near signed static unsigned  
volatile    

Example 19: Data type modifiers 

7.8 Real Numbers 

While many computers make extensive use of real, or floating point numbers 
(numbers with digits on both sides of the decimal place) 8 bit microcontrollers 
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do not. The resources needed to store and manipulate floating point numbers 
can place overwhelming demands on an 8 bit computer and usually the value 
gained is not worth the resources expended. Some C compilers for 8 bit 
microcontrollers offer limited support for floating point data types, but most 
do not.  

7.8.1 The float Data Type 

The fundamental data type for representing real numbers in C is the float 
type. Those compilers that do offer this data type store real numbers as 
floating point values – a special way of representing real numbers in computer 
memory. The maximum value for the target computer is defined in a C header 
file called values.h as a symbolic constant called MAXFLOAT. 

7.8.2 The double and long double Types 

C compilers generally allocate 4 bytes for a float variable – you can see why 8 
bit microcontrollers might have difficulty handling such values– which provides 
approximately 6 digits of precision to the right of the decimal. You can have  
greater precision with the double and long double data types. Compilers 
typically allocate 8 bytes for a double variable and more for a long 
double. There are approximately 15 digits of precision with double values 
and perhaps more from long double values. 

7.8.3 Assigning an Integer to a float 

You can assign an integer value to a floating point data type but you must 
include a decimal and a 0 to the right of the decimal. 

myFloatVariable = 2.0 
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8. Operators and Expressions 
The chief purpose of programming is providing the computer with a set of 
generalized instructions for solving problems. This concept is so important to 
programming that programmers use a specific name for a set of generalized 
instructions – the term algorithm. In fact, many programmers insist that 
programming consists of two simple steps: 

1) Choosing suitable data structures to contain and organize program 
data 

2) Choosing the appropriate algorithm to manipulate that data. 

Once you have determined variable and function data types it is time to 
examine how the functions will manipulate the data.  

8.1 Operators 

Variables and functions contain and pass values among program modules. 
Operators allow you to perform calculations with these values. C has more 
operators than most other programming languages. 

When you write a program in any language a significant portion of the program 
is dedicated to doing simple data manipulation such as incrementing or 
decrementing counters and multiplying or dividing a variable by a number. In 
most languages these simple manipulations require a statement of some length 
or more than one statement. C encapsulates many of the most common simple 
data manipulations in its operator set. 

For example, consider incrementing a counter. In most programming languages 
the following statement is required to increment a counter. 

counter = counter + 1; 

In C incrementing can be done with the following statement: 
counter++; 

The original purpose of the increment operator was to create faster and more 
efficient code. Most computers have a low level hardware instruction which 
performs a simple increment upon a value. This instruction uses less resources 



Operators and Expressions 

84 

than the instructions required to add two numbers together and assign the 
result to a third which is the case in the first example.  

Modern compilers are quite sophisticated, especially in the optimization of code 
during translation to machine language. Most compilers will see the first 
example written in a program and translate it into the speedier machine-level 
increment. Programmers who care about readability and clarity will insist upon 
using the syntax of the first example and allow the compiler to generate the 
faster and more efficient code. 

Recent criticisms of C describe the operator set as overly large. It is true that 
badly written C code tends to rely on the effects and side effects of operators, 
making it very difficult to read and debug. Often these problems are a function 
of bad programming style. 

8.2 C Expressions 

All calculations and data manipulation in are accomplished using expressions. 
In C an expression is formed by combining operators, constants and variables. 
The simplest expression in C is a single constant or identifier with no operators. 
Imagine constants and identifiers as building blocks and operators as a set of 
predefined ways to combine these blocks. An expression can be as simple as a 
single block or it can consist of single blocks and additional operators. It is 
possible to construct elaborate groups of blocks which are themselves 
expressions. 

An expression is converted to a statement by terminating it in a semicolon. The 
following example shows a valid C statement: 

5; 

All C expressions have values9 which your program uses when the expressions 
are evaluated. In the previous example, the value of the single expression in the 
statement is 5. Operators work by acting upon the expression values. For 
example, the + operator takes the value from one expression and adds it to the 
value of another expression: 

2 + 3; 

                                                 

9 This is not always the case. A call to a void function has, by definition, no value. 
However in practical terms an expression always evaluates to some value. 
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The combination of two expressions (2 and 3) with the addition operator forms 
a single, larger expression. When the computer evaluates the entire expression, 
its value consists of the sum of the two smaller expression values joined by the 
addition operator, the value 5. 

8.2.1 Binding 

How does the compiler determine which expressions apply to each operator in 
a program’s statements? The rules which govern operator behaviour specify the 
number of expressions the operator requires – we indicate this relationship by 
saying that an operator binds to a number of expressions. For example, an 
operator that manipulates the value of a single expression binds to a single 
expression. 

8.2.2 Unary Operators 

Operators that bind to a single expression are called unary operators. Some unary 
operators bind to the expression to their immediate right – these are called 
prefix unary operators where the operator act as a prefix to the bound 
expressions. Other unary operators bind to the expression to their immediate 
left. These are called postfix unary operators. For example: 

a[6]; //postfix unary operator 
a++;  //postfix unary operator 
++a;  //prefix unary operator 
&a;  //prefix unary operator 

Example 20: Postfix and prefix unary operators 

8.2.3 Binary Operators 

Operators that bind to two expressions are called binary operators. Binary 
operators bind the expressions located to their immediate left and right. For 
example, the addition operator used in our previous example is a binary 
operator and uses the general form a+b. 

a * b; //multiply two expressions 
a / b;  //divide two expressions 
a - b;  //subtract one expression from another 
a + b;  //add two expressions 
a >> b;  //shift bits right 

Example 21: Sample binary operators 



Operators and Expressions 

86 

8.2.4 Trinary Operator 

C supports a single trinary operator which binds to three expressions. The 
conditional operator ?: binds to three expressions, for example: 

a ? b : c 
Example 22: Trinary conditional operator 

The compiler evaluates expression a, if it is true (non-zero) then the value of the 
entire expression is the value of expression b. If expression a is false (zero), 
then the value of the entire expression is the value of expression c. 

8.2.5 Operator Precedence 

Statements often contain more than one operator. For example, consider the 
conversion from degrees Celsius to degrees Fahrenheit. The equation for this 
operation is: 

 
F C
C F
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2 2 30
30 2 2  

The equivalent expressions in C can be written as: 
Fahrenheit = Celsius - 2 * 2 + 30; 
Celsius = Fahrenheit - 30 / 2 + 2; 

Example 23: Combining operators in a statement 

Note that the statements in Example 23 are ambiguous. Is Celsius reduced 
by 2, then multiplied by two, then added to 30? This is the desired order of 
operations; however, without any guidelines as to how to proceed, this 
statement would not necessarily be executed as expected depending on which 
operation is performed first. 

In order to circumvent the problem of ambiguity, C provides a set of 
precedence rules. These rules dictate the order in which expressions bind to 
operators. The complete C precedence rules are available at the end of the 
book. There are two simple rules which allow programmers to avoid creating 
ambiguous expressions: 

1) Multiplication and division operators bind before addition and subtraction 

2) Brackets explicitly declare binding order 



Operators and Expressions 

87 

Consider Example 23: the first rule tells us that multiplication and division are 
done before addition and subtraction. This means that the expression 2 * 2 
will be evaluated first. The result of this expression will then bind with the - 
operator, along with + 30. Putting brackets around the first part of the 
calculation explicitly demonstrates the desired order of operations: 

Fahrenheit = (Celsius - 2) * 2 + 30; 

The revised statement implements the second rule: the brackets leave the 
compiler with no doubt about which part of the calculation to perform first. 
More importantly, the brackets explicitly depict the programmer’s intentions. 

8.2.6 The = Operator 

The assignment symbol, =, is an operator and has a precedence. C also provides 
more complex assignment operators which all share the same precedence as =. 
Assignment operators have a lower precedence than most other operators, 
therefore assignment statements will usually behave as you expect them to. 
There is one operator with lower precedence than the assignment operators – 
the comma operator. The comma operator is used to concatenate two or more 
expressions together into a single expression, for example: 

for (i=0, j=8; i<8; i++, j--) 
Example 24: Concatenating expressions with the comma operator 

The most common use for the comma operator is inside the initialization or 
condition expression of for or while loops. 

C allows statements with more than one assignment operation. For example, 
you can initialise a number of counter variables with a single statement in C. 
The parentheses in the second line show how each operator in the statement 
naturally binds.   

counterOne = counterTwo = counterThree = 1; 
(counterOne = (counterTwo = (counterThree = 1))); 
counterOne = (counterTwo = counterThree) = 1; 

Example 25: Combining assignment operators in statements 

It is possible to enforce a different binding order with assignment operators by 
using parentheses. This is shown in the third line where counterTwo is 
assigned the value of counterThree because the assignment inside the 
parentheses occurs first. Then counterTwo and counterOne are assigned 
the value of 1. counterThree is never assigned the value 1 and the original 
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assignment of its value to counterTwo is overridden. The previous value of 
counterThree is preserved. 

Example 24 and Example 25 show the nature of assignment operators and 
the importance of placing parentheses around expressions to establish 
precedence. Statements containing multiple assignment operators should be 
avoided as they can introduce many debugging difficulties.  

8.3 Arithmetic Operators 

The arithmetic operators (+, -, *, /, %) perform simple arithmetic on 
expressions. The first three arithmetic operators add, subtract and multiply 
values. 

gamesPlayed = wins + losses; 
balance = balance - withdrawal; 
area = height * width; 

Example 26: Addition, subtraction and multiplication operators 

The remaining arithmetic operators warrant a few comments. 
numYears = numMonths / 12; 
extraMonths = numMonths % 12; 

Example 27: Division and modulus operators 

The division operator, /, returns the whole quotient. Any fractional portion of 
the division is truncated and lost. Remember that truncation is not the same as 
rounding. For example, the expression 5/2 returns the value 2, not 2.5 or 3. 

Truncation only occurs during integer division. If floating point numbers are 
involved in the operation, then the division operator will perform a floating 
point divide.  

The modulus operator, %, returns the remainder of a division operation. For 
example, the expression 5%2 returns the value 1. Thus, if you have calculated a 
total number of months, you can easily convert to the number of years and 
number of extra months using the following expressions: 
years = totalMonths/12; 
extraMonths = totalMonths%12; 
Example 28: Differentiating the division and modulus operators 
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8.3.1 Increment and Decrement Operators 

The increment and decrement operators are unary operators with higher 
precedence than the arithmetic operators. The increment operator, ++, adds 
one to its binding identifier, while the decrement operator, --, subtracts one. 

You can use the increment and decrement operators in two ways: prefix and 
postfix. All of the following expressions are valid. 
++counter; //prefix increment 
counter++; //postfix increment 
--counter; //prefix decrement 
counter--; //postfix decrement 

Example 29: Prefix and postfix notation for increment and decrement 

Because the increment and decrement operators modify the value of the 
identifier they bind to, they can not be bound to complex expressions. The 
following statement is not valid: ++(a + b);.  

It is essential to understand how various forms of the increment and decrement 
operators return values. 

$$$$ Postfix returns a result and then increments or decrements 
When you use the postfix versions of the increment and decrement operators, 
the computer will return the value of the operator’s binding expression first. 
Then it will perform the increment (or decrement). Consider the following 
example. 

counter=0;  //counter set to 0 
j=counter++; //j set to 0 
i=counter;  //i set to 1 
 
counter=10;  //counter set to 10 
j=counter--; //j set to 10 
i=counter;  //i set to 9 

Example 30: Postfix increment and decrement 

The first line of code assigns a value of 0 to the variable counter. The second 
line assigns the value of an increment expression to j. Because we used the 
postfix increment operator, the expression returns a value of 0 which is the 
current value of the counter variable. counter is then incremented by 1. 
The postfix decrement operator in the fifth line forces the expression to return 
the current value of counter and then decrements counter by one. This 
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sets j to 10 as it is assigned before the decrement takes place and sets i to 9 as 
it is assigned after the decrement takes place. 

$$$$ Prefix performs an increment or decrement and then returns a 
result 

When you use prefix increment and decrement operators, the increment or 
decrement operation is performed first and then the new value is returned. 

counter=0;  //counter set to 0 
j=++counter; //j set to 1 
i=counter;  //i set to 1 
 
counter=10;  //counter set to 10 
j=--counter; //j set to 9 
i=counter;  //i set to 9 

Example 31: Using prefix increment and decrement 

With the prefix notation, the second line of code sets j to 1 instead of 0. The 
increment operation is performed first, then j is assigned the new value of 
counter. 

NOTE 
If you are using increment and/or decrement operators in a complex expression you 
should carefully document their use. Side effects caused by increment and 
decrement operators can make reading and debugging code extremely difficult. 

 

8.4 Assignment Operators 

The basic assignment operator, =, assigns the value of its right hand expression 
to the identifier on its left hand side. C also provides specialised assignment 
operators. 

Many programs include statements such as total = total + 
subTotal;. Programmers constantly perform operations upon a variable’s 
value and then reassign a new value to that variable. 

This simple type of calculation is so prevalent in programming that the authors 
of C decided to provide a class of operators to act as short cuts. You can 
combine any arithmetic or bitwise operator with an assignment operator.  
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total += subTotal; //same as total = total + subTotal  
cost *= tax; //same as cost = cost * tax 

Example 32: Variations on the assignment statement 

The assignment operator in the first line of Example 32 takes the value of its 
right hand expression, the value of subTotal, and increments its left hand 
identifier by that amount. The expression in the second line multiplies the right 
hand expression by the left hand identifier’s value, and then reassigns the new 
result to the left hand side. 

 NOTE 
Short cut assignments can be obscure and difficult to follow for anyone else reading 
your program code. Make sure to insert comments to explain the use of the 
statement.  

 

8.5 Comparison Operators 

Most programs depend on the ability to compare values. Are two values equal? 
Does a variable have a positive value? Are two expressions true? All these 
questions are typically posed in computer programs. C provides three sets of 
operators you can use to test and return the truth value of an expression: 
equality operators, relational operators and logical operators. 

8.5.1 Expressing True and False 

Any expression which returns a value of 0 is considered false while an 
expression returning any other value is considered true. 

C operators which test whether an expression is true or false will return a 1 to 
indicate a true result and a 0 to indicate a false result. It is very useful to define 
symbolic constants for TRUE and FALSE  in order to improve code readability 
and portability. These definitions often appear as follows: 

#define TRUE 1 
#define FALSE 0 

Example 33: Defining constant values for true and false 

The following is a more useful definition of TRUE and FALSE as it defines 
them in terms of  what they represent instead of associating them with a value. 
For example, TRUE is not defined as 1 but as whatever the compiler uses to 
represent the truth of (0==0).  



Operators and Expressions 

92 

#define TRUE (0==0) 
#define FALSE (0!=0) 

Example 34: Defining constant values for true and false in a portable way 

8.5.2 The Equality Operators 

The == operator returns 1 if its two binding expressions are identical in value. 
In the example: (PortA.1 == 1) assume that PortA.1 represents the 
value of bit one in the port defined as PortA. The expression returns 1 if 
PortA.1 has the value 1 and 0 if it does not. 

NOTE 
Do not confuse the == equality operator with the = assignment operator! 
PortA.1==1 tests bit 1 of Port A to see if it is set while PortA.1=1 sets bit 1 to 1. 

 

The equality operator is often used as part of a statement which controls the 
execution of a loop or a conditional action.  

while (PortA.1 == 1) { 
 // statements 
} 
if (counter == 10){ 
 // statements 
} 

Example 35: Using the equality operator in control structures 

The != operator returns 1 if its binding expressions are not identical in value. In 
the following example, the expression returns 1 if bit 0 of PortA is not 
cleared.  

while (PortA.0 != 0){ 
 // statements 
} 

Example 36: The inequality operator 

8.5.3 Relational Operators 

Relational operators return 1 when they correctly express the relative values of 
their binding expressions. 
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The less-than operator, <, returns 1 if the left hand side expression’s value is 
less than the right hand side expression’s value. The expression (2<3) returns 
TRUE while the expression (3<2) returns 0. 

The greater-than operator, >, returns 1 if the left hand side expression is greater 
than the right hand side expression. Therefore, the expression (2>3) returns a 
value of 0 while the expression (3>2) returns a value of 1. 

Both the less-than and greater-than operators have an “or equal to” version. 
Both the less-than-or-equal, <=, and greater-than-or-equal, >=, operators 
return 1 if their left hand sides are equal to their right hand side. For example, 
(3<=3) returns 1 while (3<3) returns 0. 

8.5.4 Logical Operators 

The unary logical NOT operator, !, returns 1 if its binding expression’s value is 
0; otherwise, it returns 0.  

The binary logical AND operator, &&, returns 1 if both of its binding 
expressions return non-zero values; otherwise, it returns 0. Consider the 
following example: 

#define size 30 
int i=0; 
char s[size]; 
void main() { 
     for (i=0;(s[i]!=0)&&(i<size);i++) 
         putc(s[i]); 
} 

Example 37: Logical NOT and AND operators 

In Example 37 the conditional statement for the for loop is 
(s[i]!=0)&&(i<size). This expression returns 1 if s[i] is not equal to 
0 and i is less than size. If either s[i] is equal to 0 or i is greater than or 
equal to size then the expression evaluates to 0. 
The binary logical OR operator, ||, returns 1 if either one of its binding 
expressions returns 1. The logical OR expression is only false when both binding 
expressions have zero values. Notice that the logical OR is not exclusive – that 
is, if both binding expressions return 1, a logical OR expression will still return 
1. Consider the following example. 

PortA.0, PortB.0=0; 
PortA.1, PortB.1=1; 
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(PortA.0 || PortA.1); // returns 1  
(PortB.1 || PortA.1); // returns 1  
(PortB.0 || PortA.0); // returns 0  

Example 38: Using the or operator 

C permits short circuiting of logical expressions 
C is able to perform short-circuit evaluations of expressions which use logical 
operators. When a program runs the computer will only evaluate as much of a 
logical expression as is necessary to determine if the expression has the value 1 
or 0.10 For example: 

PortA.0, PortB.0=0; 
PortA.1, PortB.1=1; 
if ( PortA.0&&((PortA.1||PortB.0)&&(PortB.1||PortA.1))){ 
 // statements 
} 

Example 39: Sort circuit expression evaluation 

While the logical expression appears complex, it is actually quite simple. In fact, 
a good compiler will flag the entire if structure as unreachable or dead code. 
Why? Because of C’s short-circuit evaluation ability. As soon as the computer 
begins evaluating the logical expression, it determines that PortA.0 has a 0 
value. It knows that this will make the outermost logical AND expression false; 
therefore, it does not evaluate the any more of the expression. 

Careful design can exploit short-circuit evaluation. For example, you might 
want to avoid calling the function to read a key from the keyboard buffer if no 
key has been pressed. The following construct shows how you can use short-
circuiting of logical expressions to achieve this: 
if ( (keyPressed() == TRUE) && ((myKey = getch()) == 0) ) { 
 // special key has been pressed 
 specialKey = TRUE; 
 myKey = getch(); 
} 

Example 40: Using short-circuit evaluation 

If the keyPressed() function returns 0, a key has not been pressed and the 
logical expression will short circuit and avoid the call to getch() – the 
compiler knows that if any term in a logical AND expression is false the entire 
expression is false. 

                                                 

10 Some compilers allow you to force full evaluation of logical expressions.  



Operators and Expressions 

95 

Notice that the second term in the logical AND expression serves two 
purposes. When keyPressed()returns 1 a key has been pressed, the second 
term gets a value for myKey and decides whether the pressed key was a special 
key (the special character NUL) or not. If getch() returns 0 then we make 
another call to getch() to retrieve the identity of the special key. 

8.6 Bit Level Operators 

Bit level or bitwise operators are operators which evaluate and manipulate data 
at the bit level. These operators are especially useful to embedded system 
programmers. They fall into two main classes: logical operators and shift 
operators.  

8.6.1 Bit Logical Operators 

C supports one unary and three binary bitwise logical operators. Each of these 
operators act only upon values stored in the char, short int, int and 
long int data types. 

NOTE 
Binary logical operators perform data promotion on operands to ensure both are of 
equivalent size. If you specify one short operand and one long operand, the 
compiler will widen the short to occupy the long 16 bits. This expression will 
return its value as a 16 bit integer. 

 

Bitwise AND Operation 
The bitwise AND operator, &, produces a bit level logical AND for each pair of 
bits in its operands. For example, if both operands have bit 0 set then the result 
of the bitwise AND expression has bit 0 set. 

int x=5, y=7, z; // 5 is binary 101 and 7 is binary 111 
z = x & y;  // z gets the value 5 (binary 101) 

Example 41: Bitwise AND operation using & 

The AND operation is easier to see if your compiler has an extension which 
permits data values in binary: 
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int x=0b00000101, 
    y=0b00000111, 
    z; 
z = x & y;  // z gets the value 00000101, or 5 

Example 42: Using the AND bitwise operator with binary values 

The resulting value for z has a bit set in every position where both x and y 
have a bit set, and bits cleared in every other position.  

NOTE 
The bitwise AND, &, is not the same operation as the logical AND, &&. 

 

OR Operations with Bits 
The bitwise OR operator, |, performs a bit level logical OR for each pair of 
bits in its operands. If either operand has a bit in a specific position set, then 
the result of the bitwise OR expression has that bit set. To return to our 
previous example: 

int x=0b00000101, 
    y=0b00000111, 
    z; 
z = x | y;  // z gets the value 00000111, or 7 

Example 43: Using the bitwise OR operator | 

The value for z has a bit set in every position where either x or y have a bit set, 
and bits unset in every other position. This produces a result with all the bits 
that either operand has set. 

NOTE 
The bitwise OR, |, is not the same operation as the logical OR, ||. 

 

XOR Operations with Bits 
The bitwise XOR operator, ^, produces a bit level logical exclusive OR for each 
pair of bits in the operand. Slightly different than OR, the XOR sets a bit when 
one of the operands has a bit set in that position but not if both operands have 
the bit set. This produces a result with bits set that the operands do not share: 

int x=0b00000101, 
    y=0b00000111, 
    z; 
z = x ^ y;  // z gets the value 00000010, or 2 

Example 44: The bitwise XOR operator 
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NOT Operations with Bits 
The bitwise NOT operator, ~, produces the complement of a binary value. 
Each bit that was set in the operand is cleared and each cleared bit is set: 

int x=0b00000101, 
    z; 
z = ~x;  // z gets the value 00000101, or 5 

Example 45: The bitwise NOT operator 

8.6.2 Bit shift operators 

Both operands of a bit shift operator must be integer values.  

Shift Right 
The right shift operator shifts the data right by the specified number of 
positions. Bits shifted out the right side disappear. With unsigned integer values 
0s are shifted in at the high end as necessary. For signed types the values shifted 
in is machine dependant. The binary number is shifted right by number bits:  
x >> number;. Right shifting a binary number by n places is the same as an 
integer division by 2n. 

porta = 0b10000000; 
while (porta.7 != 1){ 
      porta >> 1; 
} 
while (porta.0 != 1){ 
      porta << 1; 
} 

Example 46: Shifting bits left and right 

Shift Left 
The left shift operator shifts the data right by the specified number of 
positions. Bits shifted out the left side disappear and new bits coming in are 
zeroes. The binary number is shifted left by number bits: x << number;. 
Left shifting a binary number is equivalent to multiplying it by 2n. 
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9. Control Structures 
One of the most important features of any programming language is the ability 
to control the way in which program statements are executed. Normally, a 
computer executes all the statements in your program sequentially. It will start 
at the first statement in the main() function and execute each statement and 
function call until it finishes executing the last statement in main(). 

Sometimes you want the computer to deviate from sequential execution. 
Control structures allow the making of decisions about which instructions to 
execute. You can also use control structures to repeat a set of instructions. 

The C language contains a variety of powerful and flexible11 control structures. 
In general, control structures fall into two groups – those that branch and those 
that loop. 

9.1 Conditional Expressions 

All C expressions return a numerical value. For example, the expression (2 + 3) 
returns the value 5. A control structure tests the value of a particular expression 
at run-time and makes a decision about how to proceed.  

Consider the expression (2>3). This expression is false as it asserts that 2 is 
greater than 3. Since we know that all C expressions return a value we know 
that (2>3) must return a value. In C, any expression which evaluates to be 
false returns a value of 0 while an expression which evaluates to any other value 
returns a value of 1. Thus, we can see that the false expression (2>3) will 
return a value of 0.  

The representation of true and false is an important concept to keep in mind as 
you program in C. Many C programmers use control structures to test 
expressions with absolutely no logical operators in them. This may seem foreign 
to many programmers familiar with other languages. For example, many C 
programmers use a loop construct such as: 

                                                 

11 One problem stems from the overburdening of control structures with statements 
which generate side effects. 
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testVariable = 1; 
while (testVariable) { 
 // some statements 
} 

Example 47: Controlling loops without using logical operators 

As long as the testVariable retains the value of 1 the loop will continue. 
At some point a statement inside the loop might set the variable’s value to 0, 
causing the loop to terminate before the next cycle. 

9.2 Decision Structures 

C provides two structures the programmer can use to support different types of 
decisions. Decision structures test an expression to determine which statement 
or statement block to execute. 

9.2.1 if and else Statements 

if 
The if structure specifies a specific execution path based on the value of a 
particular expression. The following example shows the general form for this 
structure: 
if (expression) { 
 // if expression is true do these statements 
} 

Example 48: if and else structure 

Notice that the if statement is not followed by a semicolon. This is because an 
if statement is not a complete statement by itself. The if structure requires a 
statement or statement block to complement it. The complementing statement 
or statement block provides the terminating semicolon. All the following 
examples are syntactically correct: 
if (a) b=c; 
if (a) 
 b=c; 
if (a){ 
  b=c; 
  d=e; 
} 

Example 49: Using the if statement structure 
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When the expression evaluates to 1, the if structure’s complementing 
statement or statement block is executed. If the expression evaluates to 0, the 
complementing statement or statement block is ignored and the statement 
directly after the if structure is executed.  

else 
There is an additional optional component of the if structure which executes a 
set of statements when the if tested expression is false. This additional 
component is the else structure. 

The else structure must be the first statement following an if structure. 
When the if condition evaluates to 0, execution will pass directly to the else 
structure. 
if (expression) { 
 // if expression is true execute these statements 
} 
else { 
 // if expression is false execute these statements 
} 

Example 50: The else statement 

Like the if, else needs a complementing statement or statement block which 
provides its semicolon terminator. Unlike the if, else does not test the value 
of an expression. 

9.2.2 Nested if statements 

It is possible to place one if structure inside another if structure. Consider 
the following example. 

if (PortA_DDR.0 != 1) { 
 if (PortA_DDR.1 != 1) { 
  PortA.0 = 1; 

  PortA.1 = 1; 
} 

} 
Example 51: Nesting if statements 

If the value of PortA_DDR bit 0 it not 1 and the value of PortA_DDR bit 1 
is not 1 then PortA bit 0 and PortA bit 1 are set to 1. You could encapsulate 
the example into a single logical expression such as: 
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if ( (PortA_DDR.0 != 1) && (PortA_DDR.1 != 1) ) 
Example 52: Converting nested if statements to logical expressions 

9.2.3 Matching else and if 

An else always matches with the nearest unmatched if. A common problem 
with if..else structures arises from a set of statements such as: 
if (a) 
 b=1; 
 if (!a) 
  b=2; 
else 
 b=3; 

Example 53: Matching if and else statements 

If a has the value 1, what value will b have after these statements? What if a 
has the value of 0? Will b ever have the value of 1 after these statements? The 
answer to all these questions depends entirely upon a syntactic question – which 
if statement does the else belong to? In C an else structure always 
belongs to the nearest if not already associated with an else. 

Using this rule, we can see that the else associates with the second if, not 
the first. Therefore, if a has the value 1, b is first given the value 1 by the 
statement if (a) b=1; . When the next if statement is evaluated b is given 
the value 3 because the conditional statement is !a which evaluates to !1 or  0. 
The else statement is executed and b is assigned the value 3.  

Good programmers include braces around the complementing statements of 
if and else structures in order to make code easier to read, debug and 
modify. Applying this principal to the previous example makes the situation 
much more obvious. 

if (a) { 
 b= 1; 
 if (!a) { 
  b=2; 
 } 
 else { 
  b=3; 
 } 
} 

Example 54: Using braces to clarify the combination of if and else 

Some programmers like to make the situation clearer by placing an else on 
the same line as the end bracket of its matching if: 
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 if (!a) { 
  b=2; 
 } else { 
  b=3; 
 } 

Example 55: An alternate format for showing if else pairing 

9.2.4 switch and case 

if..else structures let you make a decision between two paths based on the 
truth value of a single expression. You can use a series of nested if statements 
to test a variable for a series of possible values, but C includes a statement 
which tests many possible variable values: the switch-case structure. This 
structure lets you switch between several different possible paths of code to 
execute. 

The switch-case structure has a switch value or expression upon which 
the branching of code execution is based. Statement execution depends upon 
the different cases provided for possible values of the switch. The general 
format for the switch-case structure looks like: 
switch (expression) { 
 case possibleValue : 
  statement; 
  statement; 
  break; 
 case anotherPossibleValue : 
  statement; 
  break; 
} 

Example 56: The switch..case structure 

Like the if statement, switch is not a statement on its own – it requires a 
complementing statement block. Unlike the if structure, the switch 
statement complementing statement block must have a specific form, 
consisting of a series of possible cases for the switch expression. 

9.2.5 Execution within a switch 

Each value for the switch expression is preceded by the keyword case, and 
followed by a colon. When the switch is executed each case is tested in 
turn. If a case value does not match the evaluated value of the switch 
expression, all code is ignored until the next case statement is encountered or 
the end of the switch block is reached. If a case value matches the 
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switch value, execution begins with the statement following the matching 
case. 

9.2.6 Fall-through execution 

Once a case value matches the switch expression every subsequent line is 
executed, including those after subsequent case statements. Most of the time 
this is not the desired action; you want the computer to execute the code for 
only one case. To avoid the “fall through” effect of the C switch-case 
structure, you must place a break statement at the end of each case. 

Sometimes you may wish to take advantage of the “fall through effect”. 
Consider the following simple example which enables a decimal point if specific 
digits are being displayed: 

switch (digit) { 
  case 1:  
     addpt = 0; 
  case 2: 
  case 4: 
 addpt = 0x80; 
 break; 
  case 5:  
 addpr = 0; 
     break; 
} 

Example 57: Using the fall-through effect with switch statements 

Notice that if the second or fourth digit is being displayed addpt is set to 
0x80. This variable addpt is a flag which allows the display of a decimal 
point which delineates between minutes, seconds and fractions of a second. 
The “fall-through” effect is used with case 2: where it falls through to case 
4:. If the first or fifth digit is being displayed addpt is set to 0 indicating that 
no decimal point is displayed. 

NOTE 
Notice that there is a break statement after the 5 case value, even though this is 
not compulsory. It is good programming practice which helps in the event that you 
modify the structure by adding additional cases. The existing break can help 
prevent debugging problems. 

 

The multiple case enhancement available with some C compilers allows a 
clearer form of this example: 
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switch (digit) { 
 case 1, 5: 
  addpt=0; 
  break; 
 case 2, 4: 
  addpt = 0x80; 
  break; 
} 

Example 58: Multiple case enhancement 

9.2.7 The default case 

Another useful feature of the switch-case structure is the option to provide 
a default case value. A default case is automatically considered a match 
with the switch expression value regardless of what that value actually is. 
This means that the default case should always be placed last in a 
switch-case structure, otherwise it will match before the switch 
expression can be tested against any other possible values. The following 
example shows the use of the default case value. 

switch (digit) { 
  case 2: 
  case 4: 
 addpt = 0x80; 
 break; 
  default : 
 addpt = 0; 
} 

Example 59: Using the default case value 

9.2.8 The goto Statement 

Many C programmers have strong objections to the use of the goto statement. 
The goto remains a holdover from early programming languages without 
sophisticated control flow. Because C provides a variety of useful control 
structures, you should not need to use goto statements. 

If you do use a goto statement, be extremely careful and document it well. 
Consider the following example: 
void main(void){ 
  if (time < limit)  
     time++; 
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  else 
goto Done; 

Done:  
} 

Example 60: The goto statement 

NOTE 
Make sure that when you use a goto statement you document where the target is. 
This can help prevent later debugging problems. As a general rule, you should write 
code which uses some control flow method other than a goto. 

 

9.2.9 Comparing goto and switch..case 

You may have noticed a similarity between the goto statement and the 
switch..case statement. This similarity in form comes with a similarity in 
function. The switch-case behaves like a goto or jump table where each 
case is a label.  

NOTE 
It is essential to remember that the switch-case operates like a jump table. The 
fall-through effect of case statements can be useful, but a source of debugging 
problems if break statements are not used properly. 

 

9.3 Looping Structures 

C control structures allow you to make a decision on the path of code 
execution. C also provides looping structures for control over program flow. 
Loop control structures allow you to repeat a set of statements.  

9.3.1 Control expression 

The key component of any loop structure is the control expression. At some 
point in each iteration, the control expression is tested. If the control 
expression evaluates to 0 program execution passes to the first statement 
following the loop structure. If the expression evaluates to 1, execution 
continues within the loop structure statement block. 
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NOTE 
The only control you have over loop structures is the control expression. The 
compiler cannot tell you if a loop has a control expression which will never evaluate 
to 0. In embedded systems programming, infinite loops are often used to keep the 
program running constantly. 

 

9.3.2 The while loop 

The simplest C loop structure is the while loop. Here is the general form of 
the while loop: 

while (controlExpression) { 
 // statement block 
} 

Example 61: The while loop syntax 

In a while loop the control expression is at the top of the structure. The 
while loop evaluates the control expression before every loop iteration – 
including the first loop iteration. Therefore, if a control expression evaluates to 
0 the first time the while loop is encountered, the statements inside the 
structure will never execute. 

9.3.3 The do loop 

The do loop tests the control expression value after every loop iteration. The 
general form of a do loop is as follows: 
do { 
 // statement block 
} while (controlExpression); // close do  

Example 62: The do loop syntax 

Because the do loop tests the control expression after every iteration of the loop 
the statement block will always execute at least once, even if the control 
expression evaluates to 0 when the loop is first entered. 

NOTE 
The do loop is one of the few cases where keywords belong at the end of a 
statement block. Because of this, you should place the while expression on the 
same line as the loop’s closing brace and put a comment after the while explaining 
that it closes a do structure. 
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9.3.4 The for loop 

The most complex and flexible looping structure available in C is the for loop. 
The for loop incorporates statements which alter variables used in the control 
expression. The example on the left shows a while loop and that on the right 
shows the equivalent for loop: 

while loop for loop 
counter=0; 
while (counter<=10){ 
   //statements 
  counter ++; 
} 

 
for 
(counter=0;counter<=10;counter++){ 
   //statements 
} 

Example 63: Comparing the while and for loops 

A for loop executes statements a predetermined number of times. The control 
expression for the loop is initialized, tested and manipulated entirely within the 
for loop parentheses. It is easy to debug the looping behaviour of the 
structure as it is independent of the activity inside the loop. 

9.3.5 How the for loop works 

Each for loop has up to three expressions which determine its operation. The 
following example shows general for loop syntax. Notice that the three 
expressions in the for loop argument parentheses are separated with 
semicolons. 
for ( initialize; control; increment) { 
 // statement block 
} 

Example 64: Using the for loop 

The first expression, initialize;, provides initial values for variables used 
in the control expression. When the for loop is first encountered this 
initialization expression is executed. 

The second expression, control;, is the same as the control expression used 
in the while and do loops. Like the while loop, the for loop control 
expression is checked before each loop iteration. If the control expression 
evaluates to 1, the loop statement block is executed; otherwise, execution passes 
to the first statement following the loop. In Example 63, the control 
expression tests to see if counter is less than or equal to 10. As long as the 
expression returns 1, the loop will iterate. 
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The third increment expression, increment, is used to modify value(s) in the 
control expression. The increment expression is executed after each loop 
iteration. Execution then jumps to the beginning of the loop and the control 
expression is tested. 

NOTE 
You can omit any of the for loop expressions, but you must include the semicolon 
separators so the compiler knows which expressions have been left out. If the 
control expression is omitted the for loop will not stop. 

 

9.4 Exiting a Loop 

C provides two ways to escape a looping structure: the break and 
continue statements. When either of these statements is encountered inside 
a loop any remaining statements inside the loop are ignored. 

9.4.1 The break Statement 

Use a break statement to completely break out of a loop. The most common 
place for a break statement is inside a switch-case structure. However, 
this is not the only place it can be used. You can also use a break statement to 
break out of any looping structure in C. When a break is encountered 
inside a looping structure, the loop terminates immediately and execution 
passes to the statement following the loop. 

9.4.2 The continue Statement 

You may wish to jump to the next iteration of a loop without breaking out of 
the loop entirely. A continue statement will allow you to do this. When a 
continue statement is encountered inside a looping structure, execution 
passes immediately to the end of the loop statement block. Because execution 
passes to the end of the loop statement block, the next action is the evaluation 
of the loop control expression. 

If continue is used with a while or for loop, execution jumps from the 
end of the statement block to the control expression at the top of the loop. If 
used with a do loop, execution passes from the end of the statement block to 
the control expression at the bottom of the loop. In all cases, the effect is the 
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same – a continue statement does not circumvent the loop control 
expression, it ignores any statements remaining in the loop iteration. 
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10. Functions 
Functions are the basic building blocks for all C programs.  

There are some restrictions for the creation of C functions. Each function in a 
C program must be self-contained. You may not define a function within 
another function. Also, you may not extend the definition for a function across 
more than one file – when you define a function it must be contained within a 
single file. 

10.1 main() 

Every C program has at least one function called main(). When the target 
computer runs your program, program execution generally begins with the first 
statement of the main() function.  

In reality, program execution usually begins with initialization code quietly 
linked into the program. The C compiler may generate this automatically, based 
on information contained within the C program, or it may link in a standard 
library. But the compiler cannot know the entire state of a target embedded 
system before invoking main(). In a desktop system, the OS itself covers 
most of the hardware details. In an embedded system without an OS, you may 
be obliged to write intialization code to establish the running state of the MCU 
before transferring control to main(). 

There it little to stop you from performing such initialization within main() 
itself. 

10.2 Executing a Function 

Any function in a C program can execute, or call, any other function. Typically, 
the main() function calls one or more other functions which may in turn call 
other functions. There is a restriction on the calling of functions: a function 
cannot call a function which it does not recognize. There are two different 
techniques for allowing a function to be recognised. 
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!!!! Provide the full definition for a function before the part of the program which 
calls it. This method has the following complications:  

1) C lets you combine functions from several files into a single program –
 how would you alert your program to functions found in another file? 

2) It is possible to have two functions call each other – which of these 
functions would you define first? 

"""" Use a function prototype to alert the compiler about a function before you actually 
provide its definition. This method has several advantages which are explained 
in the following section. 

10.2.1 Calling a Function 

The syntax for a function call in C is the function name and a list of parameters 
surrounded by parentheses. When the C compiler encounters an identifier 
followed by a left parenthesis it knows that the identifier represents a function. 
For this reason, function names always include a pair of parentheses, for 
example main(). 

If you have defined a function called sum() to add two integers and return the 
result you can assign the return value of sum() to a variable with the following 
line: 

sumResult = sum(firstNum, secondNum); 

Notice that the function call to sum() fits into an assignment expression in 
the same way as a variable or variable expression. You can place a call to a 
function any place an expression can occur. For example: 

areaRectangle = height * sum(length, width); 

You can include expressions in the parameter list in place of variable names as 
long as the expressions evaluate to an appropriate data type. For example, a 
formula to calculate the hypotenuse of a right-angled triangle could look like 
this: 

hypotenuse = sum((sideOne*sideOne), (sideTwo*sideTwo)); 

Notice that there are parentheses around each expression in the parameter list. 
This is for the sake of clarity but the is not required because of the extremely 
low precedence of the comma operator which separates elements in the 
parameter list. 
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10.3 Function Prototype Declarations 

Function prototype declarations ensure that your program knows about a 
function. Like variable declarations, function prototype declarations let the 
compiler know about the function names before the function is used. You may 
not include a function prototype inside the definition of a function. 

10.3.1 Defining the Function Interface 

Function prototypes allow you to fully define the interface to a function 
without worrying about its contents. This concept is referred to as data 
abstraction. A function interface contains: 

1) Data type returned by the function 
2) Function name 
3) Data types of function parameters 

Once a function prototype defines an interface, the compiler can check calls to 
the function. Do the calls use the right number and type of parameters? Does 
your program treat the functions return value appropriately for its type? 

10.3.2 Calling Functions in Other Files 

Function prototypes let you take advantage of functions in other files, even if 
the files have already been compiled. Pre-compiled files of functions are called 
object libraries and most C development environments make extensive use of 
them. The prototypes for functions in a pre-compiled library are often 
contained in a header file. This allows you to take advantage of pre-compiled 
functions without having to worry about compiling or maintaining them. 

For example, traditional C development environments provide standard library 
functions to handle user input and output. A header file called stdio.h 
contains the prototypes for these functions. Since very few 8 bit platforms 
provide resources for user input and output, these library functions are not 
typically needed. 8 bit microcontroller libraries are often for such things as 
A/D, serial and peripheral support. For example, the library lcd8.h contains 
functions which write data to the LCD, control the LCD and initialize the 
LCD. If you use any functions from the LCD library, you  must include the 
appropriate header file in your program: 
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#include <lcd8.h> 

The angle brackets in the #include directive instruct the preprocessor to 
search for the header file in the location reserved for library header files. The 
directory or path searched is dependent on the compiler and operating system. 

10.3.3 Function Type, Name and Parameter List 

There are similarities between a function prototype and a variable declaration. 
Consider the following example. 

int counter;    //variable declaration 
int sum(int numOne, int numTwo); // function prototype 

Example 65: Comparing function and variable declarations 

The first element in the function prototype is a data type. This tells the 
compiler the data type of the function’s return value. The type of the return 
value informs the compiler how much memory to allocate in RAM to hold that 
value. It also ensures that you use the function properly in expressions 
elsewhere in the program. In this case, you can put a call to sum() in any 
expression where an int value could occur. 

After the function data type comes the name of the function. This identifier is 
entered in the symbol table and associated with an address which contains the 
beginning of the function’s executable code. When your program calls a 
function, execution jumps to the address associated with the function name. 

Parentheses following an identifier inform the compiler that you are declaring a 
function, not a variable. You must include the parentheses, even if a function 
accepts no parameters. If there are function parameters each one should include 
a data type and a meaningful name. It is only necessary to include the data type 
of each parameter in a function prototype declaration. For example: 

int sum(int, int); 

However, this form is unclear. Including meaningful names for each parameter 
increases program readability. It also helps to understand the order in which a 
function reads parameters. For example, suppose you encounter the function 
prototype: 

int portControl(int, int); 

This prototype is ambiguous – presumably each parameter holds an integer 
value, but these could be used in very different ways. For example, suppose this 
function controls a port – the first parameter could specify the port address and 
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the second parameter the data direction values. A prototype like the following is 
much clearer: 

int portControl(int portLoc, int DDR); 

Function prototype names need not be those used in the function definition, 
but using the same names helps to avoid confusion. 

10.3.4 Functions and void 

Some functions accept no parameters or return no value12. For example, you 
could create a function prototype such as: 

wait(); 

When most compilers encounter such a declaration, they assume that the 
function will return an int value. In embedded systems this practice wastes 
memory resources because the space for the int is reserved.. To avoid this 
problem use the void keyword: 

void wait(); 

The void keyword tells the compiler explicitly that the function will not return 
a value so no memory is allocated for a return value. You can also use void 
inside the parentheses of a function prototype to explicitly declare that the 
function accepts no parameters: 

void wait(void); 

Notice that void applies to function definitions as well as the declaration of 
function prototypes. You will see programs that begin like this: 

int main(void) 

It is best to include the void keyword whenever you have a function without a 
return value or parameters. This clarifies the purpose of your functions. 

                                                 

12 Some C programmers insist that functions which just produce side effects should 
return a value to indicate success, failure or error. Since memory is at a premium in 8 
bit development, embedded developers see this practice as a luxury. 
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10.4 Function Definitions 

A function prototype describes the interface to a function while a function 
definition describes the function interface and contents. The definition includes  
the statements that will execute the function is called. When the compiler 
reaches the function definition, it reserves enough program memory to hold the 
statements in the function and stores the address of the first statement with the 
function name. 

10.4.1 Statement Block 

A function definition includes a statement block which contains all function 
statements. A statement block is a group of one or more statements enclosed in 
braces {}. Even if a function has only a single executable statement it must be 
enclosed in a statement block. For example, consider the following simple 
function which returns the sum of two integers passed as parameters: 
int sumInt(int firstNumber, secondNumber) { 
 return(firstNumber + secondNumber); 
} 

Example 66: The function statement block 

10.4.2 Variable Declarations in Function Definitions 

A function statement block can contain any number of variable declarations13. 
You may declare a variable anywhere in your function, as long as it is declared 
before it is used. Code is generally more readable if you declare variables at the 
top of the function block: 
int sumInt(int firstNumber, secondNumber) { 
 int sumTotal;    // local variable holds sum 
 sumTotal = firstNumber + secondNumber; 
 return(sumTotal); 
} 

Example 67: Variable declarations inside functions 

                                                 

13 Any statement block can include new variable declarations. 
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10.5 Function Parameters 

Most functions required information from the code that calls them. The most 
common way to pass information to a function is through its list of parameters. 
You can also pass information to a function using of global variables – any 
variable in global program space can be used by any program function. It is 
good programming practice to avoid the use of global variables if possible. 

10.5.1 Passing Data by Value 

When you call a function, parameter values are passed to the function. The 
compiler will set aside the appropriate amount of memory to hold these values. 
This is why it is important to specify function parameter data types in the 
function prototype. The following code clarifies this. 

void change(int num) { 
 num = 4;  
} 
void main(void) { 
 int val = 2; 
 change(val); //send value of val to change() 
 val += val;  // val = 2 + 2 = 4 
} 

Example 68: Passing data to a function by value 

What value will val have after last line in main()? The answer is 4, not 8. 
When main() calls change(), the value of val is passed to the function, 
not its address. The function stores the value in the memory location reserved 
for its parameter, num. The value at this memory location is changed by the 
function. change() but the change has no effect on the value stored in val 
because val’s address is not known. This method of parameter handling is 
called passing parameters by value. 

10.5.2 Passing Data by Reference 

How can you write a function which can change variables belonging to its 
calling function? A variable value can be changed by accessing the variable’s 
address to change its value. Variables are accessed by their addresses using 
pointers. A pointer is a data type which stores an address. A pointer can be 
used like any other data type, therefore you can write a function which accepts a 
pointer as a parameter. The following is another version of the example from 
the previous section. 
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void change(int *num) { //pointer to an int value 
 *num = 4;  // place 4 at address in *num 
} 
void main(void) { 
 int val = 2; 
 
 change(&val); //pass the address of val 
 val += val; 
} 

Example 69: Passing a variable to a function by address (reference) 

In this example, val will have a value of 8 after the last line in main(). 

The definition of change() includes a pointer to an integer parameter, 
instead of the integer parameter itself. When main() calls change the 
function creates a copy of val’s address in memory, not its value. The 
assignment performed by the function uses the dereference operator, *. Instead 
of assigning the value 4 to num, the dereference operator assigns 4 to the 
memory location corresponding to val’s address which is stored in the pointer 
num. The dereference operator reads the value of its binding identifier as an 
address and then represents the value stored at that address. 

NOTE 
Notice that in the call to change() you specify the address of val with the unary 
address operator &. The address operator returns the address in memory which 
stores the value of its binding identifier. 

 

10.5.3 Functions Without Parameters 

Most programs have at least one function which accepts no parameters –
 typically main(). A function with no parameters can be declared it with an 
empty parameter list. 

int myFunc() 

However, it is good practice to specify that the function has no parameters with 
the void parameter type: 

int myFunc(void) 

Functions with no parameters create side effects. A program expects calls to 
functions to return values. Anything a function might do besides return a value 
is considered a side effect. Side effects can be important and quite useful; 
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however, you should be careful when including many functions which produce 
side effects. 

Functions which produce extensive side effects are harder to maintain and 
debug, especially for members of a development team. To safely use abstract 
functions, you only need to know the data which goes in and comes out – the 
function interface. When a function produces side effects, you need to know 
about the interface and  behaviour to use it safely. 





 

121 

11. Complex Data Types 
This section introduces several complex C data types. Complex data types 
include pointer, arrays, enumerated types, unions, and structures. A solid 
understanding of pointers and arrays in particular is absolutely vital to an 
effective use of the C language. 

11.1 Pointers 

The elementary C data types, char, int and float, store values which are 
used directly. Unlike these basic types, the pointer data type represents values  
used indirectly. 

All data stored in computer memory is stored as a series of ones and zeroes. C 
data types act as filters which interpret these ones and zeroes. When the 
computer evaluates a pointer value, it reads the ones and zeroes as a memory 
address. Consider computer memory a single long street and each block of 
memory as a building, then a pointer contains a number which identifies a 
specific building on the street. 

A pointer value can be interpreted as a number just as a real address could. 
Because of the pointer’s special nature, the computer knows to interpret that 
number as an address in memory. 

NOTE 
Pointers can be difficult to understand. A pointer contains a numeric value, the 
difference is in the way the value is interpreted: as an address in memory. 

 

11.1.1 Declaring a Pointer 

The declaration of a pointer data type must specify the type of data it can point 
to. Consider the following statement which declares a pointer able to point at 
any data of type int: int * myIntPtr; 

When you declare a pointer, the compiler assigns it the value NULL – this 
signifies that it points to no valid address. 

A pointer’s data type is important. The computer uses the data type to 
determine the size of the memory block the pointer points to. For example, on 
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8 bit microcontrollers an int takes up memory in 8 bit blocks. Therefore, 
myIntPtr from the previous example points to a block of memory 8 bits in 
size. 

11.1.2 Pointer Operators 

To help manipulate pointers, C provides two, unary operators: the address-of , 
&, operator and the dereference , *, operator. The dereference operator is used 
with any pointer and the address operator with any type of data.  

The Address Operator 
The address operator, &, is a prefix unary operator. It binds with the identifier 
to its immediate right and returns the memory address of its bound identifier. 
Typically, the address operator is used to assign the address of a variable to a 
pointer or to pass the address of a variable to a function. Consider the 
following code example. 

int * myIntPtr;  // myIntPtr is a pointer to an integer 
int ** myPtrPtr;   // myPtrPtr is a pointer to a pointer 
int myInt = 2; 
// assign address of myInt to myIntPtr 
myIntPtr = &myInt;  
// assigns address of myIntPtr to myPtrPtr 
myPtrPtr = &myIntPtr;  

Example 70: Using the address of operator 

Memory Space Address Type Name  Type Value 
00000010 0x00 int myInt The integer 2 

00000000 0x01 pointer to int myIntPtr The address 0x00 

00000001 0x02 pointer to 
pointer 

myPtrPtr The address 0x01 

Table 9: Pointers and pointers-to-pointers  

It is possible to use the address operator with a pointer. In these cases, the 
address operator returns the memory address where the pointer’s value is 
stored. This double indirection is described as a pointer to a pointer which is 
also called a handle. 
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The Dereference Operator 
The dereference operator, *,  is a prefix unary operator. It interprets the value 
of its bound identifier as a memory address and returns the value stored at that 
location. For example, all of the following equality expressions evaluate to 1: 

myIntPtr = &myInt; //point to myInt 
 
*myIntPtr == myInt; //dereferenced pointer = integer value 
(*myIntPtr += 1) == (myInt += 1); 
(*myIntPtr)++ == myInt++; 

Example 71: Using the pointer dereference operator 

Why do these last two logical expressions use parentheses? Because of C’s 
precedence rules. 

In the first case the == equality operator has a higher precedence than the += 
assignment operator, so the parentheses ensure that both assignments are 
performed before the equality evaluation. 

In the second case the postfix ++ increment operator has a higher precedence 
than the * dereference operator. To perform the dereference first, we need to 
place parentheses around its sub-expression. Without these parentheses, the 
increment operator would increment the pointer instead of the what the pointer 
points at! The results of this side effect are not obvious until the next time you 
use myIntPtr. 

NOTE 
It is essential to remember that * and & are operators and that careless use of them 
can create bugs which are difficult to locate. Always include parentheses and 
comments to facilitate debugging pointer problems. 

 

11.1.3 Pointer Pitfalls 

Dereferencing a pointer set to NULL will cause problems. Pointers pointing to 
NULL do not point at a valid memory address and cannot be dereferenced. The 
following code fragment shows a common mistake made with pointers: 
int * myIntPtr; 
int myInt; 
 
*myIntPtr = myInt // dereference a NULL pointer! 

Example 72: Dereferencing a pointer set to NULL 
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Remember that assignment operators have lower precedence than the 
dereference operator. The assignment will not happen until you attempt to 
dereference the NULL pointer! Before you dereference a pointer, it must have a 
valid address value. The following fragment shows the proper way to initialize a 
pointer. 

int * myIntPtr; 
int myInt; 
 
myIntPtr = &myInt; // correct way to initialise a pointer 

Example 73: Initializing a pointer 

The address operator has a higher precedence than the assignment operator. 
The address of myInt is returned before the assignment to myIntPtr. 
Notice that we do not need to initialize myInt in order to point myIntPtr 
at it. The declaration of myInt sets aside a specific memory block for myInt. 

11.2 Arrays 

It is useful to arrange related elements of data in blocks or structures. The 
fundamental block arrangement is the array14. When you declare an array, you 
must declare both an array type and the number of elements it contains. For 
example, the following declares an array containing 8 int elements: 

int myIntArray[8]; 

When you declare an array a single, contiguous block of memory is reserved to 
hold it. This is why you must specify the array size. As soon as an array is 
declared a block of memory large enough to hold all the array elements is 
allocated. 

11.2.1 Accessing Array Elements 

The postfix subscript operator, [], is used to refer to an array element. The 
operator binds to an identifier which returns an address in memory. The integer 
expression inside the square brackets is evaluated and this number determines 
how many units of memory should be moved past the bound identifier address 
value. 

                                                 

14 Another way to arrange related elements of data is with the struct data type. 
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How big is a unit? The size is determined from the data type of the bound 
identifier expression. For example, if myIntArray is an array of int then 
the expression myIntArray returns the starting address of the block of 
memory occupied by the array. The expression myIntArray[2] jumps two 
int sized blocks from the address returned by myIntArray. 

NOTE 
When you declare an array in C you must specify the number of elements it 
contains. However, when you subscript an array the number in the brackets 
indicates the number of elements past the first element in the array. The first 
element in a C array is number 0. This is because the notation myArray[0] is 
interpreted as a jump 0 elements past the first element in the myArray memory 
block. 

 

11.2.2 Multidimensional Arrays 

A multidimensional array is declared with an array subscript for each 
dimension. For example a two dimensional array is declared as: dataType 
arrayName[dim1][dim2]; 

11.2.3 Array Operations and Pointer Arithmetic 

Two operations specifically take an array as their argument:  

1) Deriving the total array size with the sizeof() operator 
2) Deriving the address of the first array element  

All access to array data is handled using pointer arithmetic. Consider the 
following code: 

int myIntArray[8]; 
int * myIntPtr; 
myIntArray[0] = 5; //first element of array set to 5 
myIntArray[1] = 10; //second element of array set to 10 
 
// set myIntPtr to point to first element in myIntArray 
myIntPtr = &myIntArray[0]; 
myIntPtr = myIntArray; //same effect as preceding line 
// this equivalency expression is true 
*(myIntPtr + 1) == myIntArray[1]; 

Example 74: Array operations and pointer arithmetic 
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First we declare an array of int values and a pointer to an int. We then set 
the pointer, myIntPtr, to point to the first element of the array. Notice how 
to set a pointer to point at an array. You can use the expression 
myIntPtr = myIntArray; because myIntArray returns the address 
of the first array element. 

The tricky part of Example 74 is the last statement. Pointer arithmetic allows 
us to specify the int sized block of memory next to myIntPtr with the 
expression myIntPtr + 1. Since we know that arrays are always stored in 
contiguous blocks of memory, it follows that the int sized block of memory 
next to myIntArray[0] must be myIntArray[1]. 

In general, the expressions *(myIntPtr + x) and myIntArray[x] are 
equivalent when myIntPtr points to the first member of myIntArray[]. 
Because the subscript square brackets are an operator, the expressions 
myIntPtr[x] and myIntArray[x] are also equivalent. The subscript 
operator checks the underlying type of myIntPtr and, finding that it points 
to an int, jumps over x int sized blocks. 

Be careful! The apparent symmetry between pointers and arrays emerges from 
the way their related operators work. Arrays and pointers are not fundamentally 
the same. The first two equivalency expressions return 1, but the third may 
return either 1 or 0: 

*(myIntPtr + x) == myIntArray[x]; 
myIntPtr[x] == myIntArray[x]; 
// this may not be true 
*(myIntPtr + x) == (myIntArray + x); 

Example 75: The relationship between arrays and pointers 

Even though the expression myIntArray returns an address value it is not a 
pointer. Since myIntArray is not a pointer, pointer arithmetic will not always 
work as expected15. 

11.2.4 Arrays of Pointers 

An array can contain pointers to other data types. The most common use for an 
array of pointers is to use an array of pointers to type char which are pointed to 
strings. This technique can be used to send messages to a screen. In the 

                                                 

15 For a useful treatment of array-pointer distinctions see Koenig’s C Traps and Pitfalls. 
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following example the array is declared in main but the array is passed to a 
function where the values of the pointers are assigned. 

void func1(char *p){ 
    p[0]="Press 1 to start"; 
    p[1]="Press 2 to continue"; 
    p[2]="Press 3 to RESET"; 
    p[3]="Press 4 to quit"; 
} 
void main(void){ 
 int val; 
 char *message[10]; 
 if (val==TRUE){ 
    func1(message); 
 } 
 else 
    message[0]="Status is OK"; 
} 

Example 76: Declaring and initializing an array of pointers 

11.3 User Defined Data Types 

The most flexible complex data types are those you define yourself. C allows 
you to construct new data types in terms of those already defined. 

11.3.1 Using typedef to Define New Data Types 

The typedef keyword is used to define new data types. You must include an 
underlying type for your new type and the name of your new type. 

For example, you can create a new type called BYTE using unsigned short 
int as the underlying type: 
typedef unsigned int UBYTE; 
typedef unsigned long UWORD; 
UBYTE Var1;  // new variable of type UBYTE 
UWORD Var2;  // new variable of type UWORD 

Example 77: Using typedef to define a new data type 

With typedef, the name of the new type is in the same location as the 
variable name in a simple variable declaration. For example, what new types are 
created with the following declaration? 

struct coord_tag { 
       int xVal; 
       int yVal; 
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}; 
typedef struct coord_tag COORD; 
 
typedef struct location_tag { 
        int xLoc; 
        int yLoc; 
}LOC; 
 
COORD first, last; 
LOC pt1, pt2; 

Example 78: Defining a new enumerated type 

COORD and LOC are the new types. In this case, coord_tag and 
location_tag are the tags for the new structures. Tags are discussed in 
the next section. Example 78 shows two different techniques for using 
typedef with struct. 

11.3.2 Using types defined with typedef 

Once you have defined a new type using typedef, it can be used like any C 
data type.  

"# You can use sizeof() to retrieve memory size requirements: 
byteSize = sizeof(UBYTE); 
structureSize = sizeof(COORD); 

"# You can cast the results of expressions: 
// get next char from buffer, store number value in myByte 
myByte = (UBYTE)getNextChar(); 

11.4 Enumerated Types 

The most straightforward complex data type is the enumerated data type, 
declared as type enum. The enum type is used to represent a set of possible 
values. The traditional example for this type is the days of the week: 
enum WEEK { Su, Mo, Tu, We, Th, Fr, Sa } dayOfWeek; 

This declaration creates an enumerated type called WEEK, provides seven 
possible values, and declares a variable called dayOfWeek of this new 
enumerated type. You can also separate this process into two declarations: 

enum WEEK { Mo, Tu, We, Th, Fr, Sa, Su }; 
enum WEEK dayOfWeek; 
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The label WEEK is not a new type, it is called a tag. The second line of code in 
the previous example requires the enum keyword for the declaration of 
dayOfWeek. To use WEEK as a user defined data type you require a 
declaration such as: 

typedef enum { Mo, Tu, We, Th, Fr, Sa, Su } WEEK; 
You can declare the enumerated variable dayOfWeek on a single line. Since 
the enumerated list tag WEEK represents the list itself we do not need to include 
it in the declaration. 
enum { Su, Mo, Tu, We, Th, Fr, Sa } dayOfWeek; 

The tag is useful as it can represent a list of enumerated elements  to declare 
more than one variable of that type. 

enum WEEK { Su, Mo, Tu, We, Th, Fr, Sa } dayOfWeek; 
enum WEEK dayOFWeek; 
enum WEEK payDay = Th; 
enum WEEK groceryDay = Sa; 

Example 79: Declaring multiple variables of the same enumerated type 

11.4.1 Enumerated Type Elements 

Enumerated type elements are interpreted as integer constants. By default the 
first element in an enumerated list is given the integer value 0, the second 
element is given 1 and so on. This allows for the  manipulation of values in an 
enumerated list as numbers: 

dayOfWeek = Mo; 
dayOfWeek += 1;  // dayOfWeek now has the value Tu 

Example 80: Enumerated types as integer values 

You can also test the elements of an enumerated type: 
while (dayOfWeek < Sa) { 
 weekDay = TRUE; 
 getNextDay(dayOfWeek); 
} 

Example 81: Testing the value of an enumerated type 

11.4.2 Enumerated Type Value Checks 

A drawback of enumerated type variables in C is the lack of boundary checking. 
You can legally use the expression dayOfWeek = Fr+3. Since the Fr 
element has the value 4, dayOfWeek is assigned the value 7. However, there is 
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no element representing member 7 of the enumerated type WEEK. These errors 
are often not detectable at compile time. 

NOTE 
Ensure that enumerated variables have the values you expect them to have by 
performing your own boundary checking. 

 

11.4.3 Specifying Values for Enumerated Elements 

By default, the compiler supplies a range of integer values beginning with 0 for 
any list of enumerated elements. This default behaviour can be modified in two 
ways: 

1) Specify values for each enumerated element. The following example is from 
the COP8SAA7 WATCHDOG service register WDSVR. Bits 6 and 7 of 
this register select an upper limit to the service window which selects 
WATCHDOG service time.  

enum WDWinSel { Bit7 = 7, 
       Bit6 = 6}; 

Example 82: Specifying integer values for enumerated elements 

2) Specify a starting value for the enumerated elements. By default, the 
compiler assigns the value 0 to the first element in the list. You can set the 
list to begin with another value. 

enum ORDINALS {first = 1, second, third, fourth, fifth}; 
Example 83: Specifying a starting value for enumerated elements 

When the compiler encounters an element in an enumerated list without an 
assigned value it counts from the last value that was specified. For example, the 
following enumerated list specifies the appropriate values for its elements. 

enum ORDINALS {first=1, second, fifth=5, sixth, seventh}; 
Example 84: The assignment of integer values to an enumerated list 

NOTE 
Since character constants are stored as integer values they can be specified as 
values in an enumerated list. enum DIGITS {one=‘1’, two=‘2’, 
three=‘3’}; will store the appropriate integer values of machine character set 
(usually ASCII) for each digit specified in the element list. 
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11.5 Structures 

Structures support the meaningful grouping of program data. Building the 
appropriate data structures is one key to the effectiveness of a new program. 

The following declaration creates a structured type for the number shown by an 
LED display and describes each element within the structure. The display is 
defined as having the components DisplaySelected, hundreds, tens 
and ones. 
struct Display_tag { 
 int DisplaySelected; 

int hundreds; 
int tens; 
int ones; 
char AorP; 

}; 
Example 85: Declaring the template of a structure 

11.5.1 The structure tag 

The structure tag is used as a shorthand representation for a group of structure 
elements. In the previous example the tag Display_tag represents the 
structure description. Note that, as with enumerated types, the compiler 
allocates no memory for the structure declaration itself because it is used solely 
as a template for variable declarations. When you declare a variable for a 
structure, the compiler will allocate an appropriate block of memory: 

struct Display_tag CurrentTime; 
You must repeat the keyword struct because Display_tag is not a valid 
data type, it is a structure tag. Like the enumerated type tag, it is syntactically 
correct to leave the tag out: 
struct { 
   int DisplaySelected; 
   int hundreds; 
   int tens; 
   int ones; 
   char AorP;  
}; 

Example 86: Declaring a structure without a tag 



Complex Data Types 

132 

11.5.2 Using typedef to Define a Structure 

If you create a structure which is used several times in your program or you are 
using more than one kind of structure, it is good practice to create structure 
types using typedef.  

typedef struct Display_tag { 
 int DisplaySelected; 

int hundreds; 
int tens; 
int ones; 
char AorP;  

}DISPLAY; 
 
DISPLAY currentTime; 
DISPLAY alarmTime; 

Example 87: Using typedef to clarify structure declaration 

Remember that you can declare a pointer to a struct before the struct 
itself is declared. The example declares a new structure type called DISPLAY. 
The use of typedef helps at other points in the program when you need a 
structure instance. 

11.5.3 Accessing Structure Members 

C includes two binary operators which allow access to structure members: the 
dot operator, ., and the structure pointer operator, ->. In each case, the 
binding identifier to the left of the operator indicates the structure and the 
binding identifier to the right of the operator indicates the element within that 
structure. 

11.5.4 Indicating a Field with the Dot Operator 

Once a struct variable is declared you can use the dot operator to reference 
an element of the structure. The following assigns values to the elements of the 
currentTime variable for the structure defined in Example 87. 

currentTime.DisplaySelected = 1; 
currentTime.hundreds = 9; 
currentTime.AorP= ”A”; 
alarmTime.AorP = currentTime.AorP; 

Example 88: Accessing elements in a structure 



Complex Data Types 

133 

11.5.5 Indicating a Field with the Structure Pointer 

Structures are often manipulated using pointers. C has an operator specially for 
this purpose; the structure pointer operator. In order to use a pointer to access 
members of a structure the pointer must first be pointed at the structure 
instance. The following example points Display_Ptr to alarmTime and 
then accesses the elements of alarmTime. 

struct Display_tag * Display_Ptr; 
struct Display_tag { 
 int DisplaySelected; 

int hundreds; 
int tens; 
int ones; 
char AorP;  

}alarmTime; 
 
Display_Ptr = &alarmTime; //point Display_Ptr to alarmTime 
Display_Ptr->ones = 7;    //set alarmTime.ones to 7  
Display_ptr->AorP = ‘P’;  //set alarmTime.AorP to P 
Display_Ptr->tens = 9;   //set alarmTime.tens to 9 
(*Display_Ptr).tens = 9;  //set alarmTime.tens to 9   

Example 89: A structure accessed with a pointer 

The last line (*Display_Ptr).tens = 9; does the same thing as 
Display_Ptr->tens = 9;, assigns the value 9 to the tens element of 
alarmTime.  

Notice the parentheses around the dereference sub-expression. The dot 
operator has a higher precedence than the dereference operator. If the 
parentheses are omitted the expression *Display_Ptr.tens would 
attempt to return the address of the tens element of the Display_Ptr 
structure. Since Display_Ptr is not a structure, this would give an error. 
(*Display_Ptr).value dereferences the pointer first and returns the 
structure object pointed to by Display_Ptr. The expression then returns 
the tens element from this structure. 

11.5.6 Bit Fields in Structures 

Using bit fields allows the declaration of a structure which takes up the 
minimum amount of space. A bit field contains a specified number of bits, it is 
a member of a structure and is accessed like any other structure member. The 
following example for the Motorola MC68HC705C8 defines the Timer Control 
Register (TCR) bits as bit fields in the structure called TCR. 



Complex Data Types 

134 

struct reg_tag { 
  int ICIE : 1; // field ICIE 1 bit long 
  int OCIE : 1; // field OCIE 1 bit long 
  int notUsed : 3 = 0; //notUsed  is 3 bits and set to 0 
  int IEDG : 1; // field IEDG 1 bit long 
  int OLVL : 1; // field OLVL 1 bit long 
} TCR; 

Example 90: Bit fields in structures 

C implements bit fields as variable length integer elements within a structure. A 
bit field is accessed with the structure operators. You cannot use a pointer to 
point to the bit field element directly; you must access it through the structure 
using the -> operator: 

struct reg_tag * TCRFieldPtr; 
TCRFieldPtr = &TCR; 
TCR.ICIE = 1; // access using dot operator 
TCRFieldPtr->ICIE = 1;  // using right arrow operator 

Example 91: Accessing bit fields 

11.5.7 Storing bit fields in memory 

Storage of bit fields in memory varies from one compiler to another. Some 
compilers cannot store a bit field over a word boundary. In this case the 
following structure would place the second field entirely in a separate word of 
memory from the first: 

struct { 
 unsigned int shortElement : 1; // 1 bit in size 
 unsigned int longElement : 8; // 8 bits in size 
} myBitField; 

Example 92: Compiler dependant storage of bit fields 

The order in which the compiler stores elements in a structure bit field also 
varies from compiler to compiler. Some compilers may use the first word of 
allocated memory to hold longElement in the previous structure. Other 
compilers may use the first word to contain shortElement and part or 
none of longElement.  

11.5.8 The behaviour of bit fields 

Bit field elements behave exactly as an int of the same size. Thus an element 
occupying a single bit could have an integer value of either 0 or 1, while an 
element occupying two bits could have any integer value ranging from 0 to 3. 



Complex Data Types 

135 

You can use each field in calculations and expressions exactly as you would an 
int. 

11.6 Unions 

C programmers developing for traditional platforms do not often use the 
union data type, but it is very useful resource for the embedded system 
developer. The union type filters data stored in a single block of memory 
based on associated data types. 

For example, when you declare two individual int and char variables the 
compiler will allocate two 8 bit blocks of memory: 

int anInt; 
char aChar; 

However, if you place both these variables in a union the compiler only 
allocates a single 8 bit block of memory for both variables: 

union share_tag { 
 int as_Int; 
 char as_Char; 
} share;   //share is the variable name 

Example 93: Declaring a union 

The format of union resembles that of the structure. You can identify a union 
with a tag name. To make your union a data type you must use the typedef 
keyword. In the following example, a new type called share is created. 

typedef union share_tage { 
 int asInt; 
 char asChar; 
} share_type;  //share_type is the data type 
share_type share;  //share is the variable name 

Example 94: Using typedef to declare a union 

One common use of the union type in embedded systems is to create a 
scratch pad variable that can hold different types of data. This saves memory by 
reusing one 16 bit block in every function that requires a temporary variable. 
The following example shows a declaration to create such a variable: 

struct lohi_tag{ 
 short lowByte; 
 short hiByte; 
}; 
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union tagName { 
 int asInt; 
 char asChar; 
 short asShort; 
 long asLong; 
 int near * asNPtr; 
 int far * asFPtr; 
 struct hilo_tag asWord; 
} scratchPad;  //scratchPad is the variable name 

Example 95: Using a union to create a scratch pad 

Another common use for union is to facilitate access to data as different 
types. For example, the Microchip PIC16C74 has a 16 bit timer/counter 
register called TMR1 made up of two 8 bit registers called TMR1H (high byte) 
and TMR1L (low byte). It is possible that sometimes you would like to access 
the register as two 8 bit values or as one 16 bit value. A union will facilitate this 
type of data access: 

struct asByte { 
 int TMR1H; //high byte 
 int TMR1L; //low byte 
} 
union TIMER1_tag { 
 long TMR1_word;  //access as 16 bit register 
 struct asByte TMR1_byte; 
} TMR1; 

Example 96: Using a union to access data as different types 

11.6.1 Retrieving a Union Element 

As with structures, union elements are accessed with the dot and right arrow 
operators. Use the dot operator to specify an element by placing it after the 
name given to the union. In the following example, the data in the 
scratchPad memory block is interpreted as a char. 

scratchPad.asChar = ‘b’; //assign b to scratchPad 
tempChar = scratchPad.asChar; //retrieve as character 

Example 97: Accessing a union element with the dot operator 

If you indicate the union with a pointer, use the right arrow operator to specify 
an element. In the following example, scratchPad is interpreted as an int. 

union tagName * scratchPad_ptr;  //declare pointer type 
scratchPadPtr = &scratchPad;   //point to scratchPad 
someInt = scratchPad_ptr->asInt; //retrieve as integer 

Example 98: Using the right arrow operator to access a union member 
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11.6.2 Using Unions with Incompatible Variables 

Since the compiler uses a single block of memory for the entire union, it 
allocates a block large enough for the largest element in the union. For example, 
the compiler will allocate a 16 bit block for the union scratchPad in 
Example 98 because the elements asLong and asFPtr require 16 bits16. 

The compiler will align the first bit of each element in the memory block. If you 
assign a 16 bit value to scratchPad and then read it as an 8 bit value, the 
compiler will return the first 8 bits of the data stored. 

NOTE 
Verify your target hardware’s method for storing 16 bit integer values. Some 
hardware stores long data with a higher address for the low byte. This is called big 
endian because the “big end” comes at the end. Other hardware stores the high 
byte at the higher address. This is called little endian because the “little end” comes 
last. The results returned from extracting 8 bits from a 16 bit value will differ 
depending on the hardware storage method. 

 

The scratchPad variable can handle the 16 bit value as a word and can 
provide access through a structure to either byte in the word. This is useful so 
you can use the asWord element to return a specific part of the word. 

scratchPad.asLong = someLong; 
someInt = scratchPad.asWord.lowByte; 

Example 99: Returning the low Byte of a word 

Notice that the scratchPad example assumes the target hardware is big 
endian (high byte last). For a little endian target (low byte last), the asWord 
element needs to be defined as follows17. Notice that redefinition does not 
affect the statements in the previous example. 

struct hilo_tag { 
 short highByte; 
 short lowByte; 
} asWord; 

Example 100: Returning a specific part of a word for little endian 

                                                 

16 asInt may require 16 bits, depending on the compiler. 

17 To promote even greater portability and clarity define a new data type called BYTE 
based on the underlying 8 bit data type on the target hardware. 
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The problem of incompatible variables is exacerbated when the variables have 
different underlying storage methods. For example, the following union gives 
surprising results if you do not keep track of the last data assigned to it. Since 
floating point numbers typically use mantissa/exponent representation the 
result may not be as expected: 

union { 
  int asInt; 
  float asFloat; 
} someUnion; 
 
someUnion.asFloat = someFloat; 
someInt = someUnion.asInt; 

Example 101: Incompatible variables with different storage methods in unions 
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12. Storage and Data Type Modifiers 
C provides the capability to further specify how stored values should be 
interpreted with the use of storage class and data type modifiers. Many of 
these modifiers have been introduced briefly in other sections of this book. 
Both storage class and data type modifiers are keywords which are included in a 
variable or function data type declaration. 

12.1 Storage Class Modifiers 

Storage class modifiers control memory allocation for declared identifiers. C 
supports four storage class modifiers18 which can be used in variable 
declarations: extern, static, register and auto. Only extern is 
used in function declarations. 

When the compiler reads a program it must decide how to allocate storage for 
each identifier. The process used to accomplish this task is called linkage. C 
supports three classes of linkage – external, internal and none. C uses identifier 
linkage to sort out multiple references to the same identifier. 

12.1.1 External linkage 

References to an identifier with external linkage throughout a program all call 
the same object in memory. There must be a single definition for an identifier 
with external linkage or the compiler will give an error for duplicate symbol 
definition. By default, every function in a program has external linkage. Also by 
default, any variable with global scope has external linkage. 

12.1.2 Internal linkage 

In each compilation unit19, all references to an identifier with internal linkage 
refer to the same object in memory. This means that you can only provide a 
single definition for each identifier with internal linkage in each compilation 
unit of your program. 

                                                 

18 The ANSI standard specifies a fifth modifier: typedef  
19 A compilation unit is not always a single file of code because of #include files 
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No objects in C have internal linkage by default. Any identifier with global 
scope (defined outside any statement block), and with the static storage class 
modifier, has internal linkage. Also, any variable identifier with block scope 
(defined within a statement block), and with the static storage class 
modifier, has internal linkage. 

Although you can create local variables with internal linkage scoping rules 
restrict local variable visibility to their enclosing statement block. This means 
that you can create local variables whose values persist beyond the immediate 
life of the statement blocks in which they appear. Normally the computer re-
allocates local variable space every time a statement block is entered. If a local 
variable is declared as static, space is allocated for the variable once only – 
the first time the variable is encountered. 

NOTE 
Unlike other internal linkage objects, static local variables need not be unique within 
the compilation unit. They must be unique within the statement block which contains 
their scope. 

 

Objects with internal linkage typically occur less frequently than objects with 
external or no linkage. 

12.1.3 No linkage 

References to an identifier with no linkage in a statement block refer to the 
same object in memory. If you define a variable within a statement block, you 
must provide only one such definition. Storage for objects with no linkage is 
traditionally allocated from stack space. 

Any variable declared within a statement block has no linkage by default, unless 
the static or extern keywords are included in the declaration. Both 
function return values and function parameters have no linkage, allowing 
recursive function calls. Each copy of a recursively called function can allocate 
private copies of parameters and return values. 

12.1.4 The extern Modifier 

An identifier with external linkage can be used at any point within a program as 
long as it is visible. Suppose the function int Calculate_Sum() is 
declared in a source file. If you want to use this function in any other 
compilation unit, you must tell the compiler where to look for the function 
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definition. The concept is identical to prototyping a function so that it can be 
used before it is defined. To declare an external function use the extern 
keyword: 

extern int Calculate_Sum(); 

When the compiler encounters an external function declaration it interprets it as 
a prototype for the function name, type and parameters. The extern keyword 
tells the compiler that the function definition is in another compilation unit. 
The compiler leaves the connection of such code to the linker whose job it is to 
resolve references to symbols between compilation units. 

If you build a library of functions to use in many programs it is good practice to 
include extern function declarations in a header file which is included in the 
source files for your program. 

You can declare an external function within a statement block using the 
extern keyword. This informs the compiler that the function is defined 
elsewhere in the program and restricts the scope of the function to the 
statement block. 

For example, suppose the initialize() function is in a subsidiary source 
file and you want it visible only to main(). The following code lets main() 
know about initialize() while hiding it from other functions in the same 
source file as  main(). 
 void main(void) { 
  extern int initialize(void); 
  initialize(); 
 } 

Example 102: Restricting a function’s scope by declaring it as extern 

12.1.5 Global Variables and extern 

Like functions, global variables have external linkage. To use a global variable in 
more than one source file, you must declare it as extern: 

extern int myGlobalInt; 

The compiler interprets an external declaration not as a variable declaration but 
as a notice that the variable definition occurs in another file. You must link files 
with external declarations with a main module whose source contains the 
declaration for the variable: 

int myGlobalInt; 
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Developers often collect global variable definitions in a header file called 
globals.h. Each declaration in the file will look similar to: 

EXT int myGlobalInt; 

Preprocessor directives are placed at the top of the file to handle the EXT tag in 
each definition: 

#ifdef MAIN 
 #define EXT “ ” 
#else 
 #define EXT “extern” 
#endif 

Example 103: Using preprocessor directives to declare extern global variables 

Each program source module will contain the line #include 
<globals.h>. At the top of the main source file, before global.h is 
included, the directive #define MAIN should appear. This keeps global 
variable declarations in one place and ensures that the extern keyword is only 
used when needed. The main source file contains definitions for the variables 
without the extern keyword. 

12.1.6 The static Modifier 

By default, all functions and variables declared in global space have external 
linkage and are visible to the entire program. Sometimes you require variables 
or functions which have internal linkage: they are visible within a single 
compilation unit. Use the static keyword to restrict the scope of variables: 

static int myGlobalInt; 
static int staticFunc(void); 

Example 104: Using the static data modifier to restrict the scope of variables  

These declarations create global identifiers which are not accessible by any 
other compilation unit. Any function within the same compilation unit as the 
static variable declarations can access these identifiers. 

12.1.7 The visibility of static variables 

The static keyword can be used to create permanent local variables. For 
example, consider the task of tracking the number of times a recursive function 
calls itself (the function’s depth). You can accomplish this using a static 
variable: 
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int myRecurseFunc(void) { 
 static int depthCount=1; 
 depthCount += 1; 
 if ( (depthCount > 10) || (!DONE) ) { 
  myRecurseFunc(); 
 } 
} 

Example 105: Using static variables to track function depth 

The function in Example 105 contains an if statement which stops it from 
recursing too deeply. The static variable depthCount is used to keep 
track of the current depth. Normally, when a function is called the computer re-
allocates memory for its automatic local variables. Memory for static 
variables, however, is only allocated once. The static variable 
depthCount retains its value between function calls and conserves memory 
because 8 bits is not allocated every time myRecurseFunc() calls itself. 

Because depthCount is defined inside the myRecurseFunc()statement 
block, it is not visible to any code outside the function. Therefore, if you have 
another recursive function you can use the variable name depthCount20. 

12.1.8 The register Modifier 

The register keyword is not often used in embedded systems programming 
because the target hardware does not have the variety of registers available on 
traditional C platforms. 

When you declare a variable with the register modifier you inform the 
compiler to optimize access to the variable for speed. Traditionally, C 
programmers use this modifier when declaring loop counter variables: 

{ 
 register int myCounter=1; 
 while (myCounter<10) { 
  ... 
  myCounter += 1; 
 } //end while 
} // enclosed block enforces reallocation of myCounter 

Example 106: Using the register data type modifier 

                                                 

20 If functions are mutually exclusive use a global variable to save memory. 
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Unlike other storage class modifiers, register is simply a recommendation 
to the compiler. The compiler may use normal memory for the variable if it 
determines that such an allocation will allow the fastest access to the variable. 

Because of the scarcity of registers on 8 bit machines and the desire for size 
optimization rather than speed, the register keyword is not very useful for 
embedded system programmers. 

Notice the technique used in Example 106 places the register variable 
declaration and its associated while loop inside a statement block. This forces 
the compiler to reallocate storage for myCounter as soon as the loop is 
finished – if the compiler uses a register to store myCounter, it will not tie up 
the register longer than necessary. 

 

NOTE 
If you use register ensure that the code for the variable declaration is close to the 
code where the variable is used. This minimizes the overhead expense of 
dedicating a register for storage of a single particular variable. 

  

12.1.9 The auto Modifier 

The auto keyword denotes a temporary variable. You may only use auto 
with variables because C does not support functions with local scope. Since all 
variables declared inside a statement block have no linkage by default, the only 
reason to use the auto keyword is for clarity: 
int someFunc(NODEPTR myNodePtr) { 
 extern NODEPTR TheStructureRoot;  

// global pointer to data structure root 
 auto NODEPTR tempNodePtr;   

// temporary pointer for structure manipulation 
 ... 
} 

Example 107: Using the auto data modifier 

In this example, we declare tempNodePtr as an auto variable to make it 
clear that, unlike the global TheStructRoot pointer, tempNodePtr is 
only a temporary variable. 
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12.2 Data Type Modifiers 

Data type modifiers alter the way information is recorded and retrieved. Type 
modifiers extend the basic data types available. Type modifiers apply to data 
only, not to functions. You can use them with variables, parameters, and 
returned data from functions. 

Some type modifiers can be use with any data while others are used with 
specific types of data such as pointers. 

12.2.1 Value Constancy Modifiers: const and volatile 

The compiler’s ability to optimize a program relies on several factors. One of 
these is the relative constancy of the data objects in your program. By default, 
variables used in a program change value when the instruction to do so is given 
by the developer. 

const 
Sometimes you want to create variables with unchangeable values. For example, 
if your code makes use of *, the constant PI, then you should place an 
approximation of the value in a constant variable: 

const float PI = 3.1415926; 

When your program is compiled, the compiler allocates ROM space for your 
PI variable and will not allow the value to be changed in your code. For 
example, the following assignment would produce an error at compile time: 

PI = 3.0; 

volatile 
Volatile variables are variables whose values may change without a direct 
instruction. For example, a variable which contains data received from a port 
will change as the port value changes.  

Using the volatile keyword informs the compiler that it can not depend 
upon the value of a variable and should not perform any optimizations based 
on assigned values. 
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12.2.2 Allowable Values Modifiers: signed and unsigned 

You can direct the compiler to permit integer data types to contain negative as 
well as positive values. You can also restrict integer data types to positive values 
only. The sign value of an integer data type is assigned with the signed and 
unsigned keywords. 

signed 
The signed keyword forces the compiler to use the high bit of an integer 
variable as a sign bit. If the sign bit is set with the value 1 then the rest of the 
variable is interpreted as a negative value. By default, short, int and long 
data types are signed and the signed keyword need not be used. The char 
data type is unsigned by default. To create a signed char variable you must use 
a declaration such as: 

signed char mySignedChar; 

If you use the signed keyword by itself the compiler assumes that you are 
declaring an integer value. Since int values are signed by default, programmers 
rarely use the syntax: signed mySignedInt;. 

unsigned 
To create unsigned short, int, or long data types use the unsigned 
keyword. You need never use the keyword with char values because they are 
unsigned by default. This keyword forces the computer to read the high bit 
as part of the variable value: 

unsigned int myUnsignedInt; 

If you use the unsigned keyword alone the compiler assumes the variable 
you are declaring is an int. C programmers often use the following syntax: 

unsigned myUnsignedInt; 

12.2.3 Size Modifiers: short and long 

The short and long modifiers instruct the compiler how much space to 
allocate for an int variable. The resulting variable is interpreted as an int, but 
the number of bits used to store the variable value may change. 
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short 
The short keyword declares an int of the same size as a char variable: 
usually 8 bits: 

short int myShortInt; 

On microcontrollers where the natural machine unit is the byte a short int 
is usually the same size as an int. Some compilers allow two byte int 
variables. In these cases, the short int remains 8 bits in size. 

If you use the short keyword alone, the compiler assumes the variable is a 
short int type: 

short myShortInt; 

long 
The long keyword declares an int twice as long as a normal int variable: 

long int myLongInt; 

On some computers a long is not twice the size of an int. However, long 
will always be the same size or larger than int and short will always be the 
same size or smaller than int.  

On microcontrollers a long int occupies two bytes. If the compiler allows 
you to use 16 bit int data types, the long and int are usually the same size 
because of the fact that long data types always occupy two bytes. 

12.2.4 Pointer Size Modifiers: near and far 

The near and far keywords are common extensions to standard C. They 
allow different size pointers to address different areas of computer memory. 

near 
The near keyword creates a pointer which points to objects in the bottom 
section of addressable memory. These pointers occupy a single byte of memory, 
and the number of memory locations to which they can point is limited to the 
first 256 locations, or from $0000 to $00FF. 

int near * myNIntptr; 
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For efficient RAM access, most microcontrollers place user RAM in the low 
memory addresses. Thus, near pointers usually point to data stored in user 
RAM such as user defined variables. 

far 
The far keyword creates a pointer which can point to any data in memory: 

int far * myFIntptr; 

These pointers take two bytes of memory which allows them to hold any legal 
address location from $0000 to $FFFF. far pointers usually point to objects 
in user ROM, such as user defined functions and constant variables. 

12.2.5 Using near and far pointers 

Each microcontroller has different memory usage and the specific 
implementation of near and far pointers will vary depending on the target 
platform. In general, microcontrollers fall into two groups:  

1) Harvard architecture machines that maintain separate memory areas for 
data memory, RAM, and program memory, ROM. 

2) Von Neumann architecture machines which arrange ROM and RAM into 
one contiguous address space. 

Regardless of machine architecture, the compiler uses near pointers to point 
to commonly referenced data such as variables. The far pointers are harder to 
manipulate and are used for less common pointing tasks such as pointing to 
functions and constants. 

12.2.6 Default pointer type 

Since the implementation of near and far pointers varies from target to 
target the default method of creating pointers also varies. For example, what 
kinds of pointers do the following two declarations generate? 

int * myIntPtr; 
const int * myConstIntPtr; 

On most target machines, the compiler generates a near pointer for the first 
declaration and a far pointer for the second. Since the compiler knows that 
const int data is stored in ROM it knows a far pointer is needed. 
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The following declaration generates a far pointer to the void function 
initPtr knowing that the *initPtr() function will get stored in ROM. 

void (*initPtr)(STATSTRUCT * statusPtr){ 
 // contents of function 
}; 

Example 108: The far pointer type as default 

If you use pointers extensively you must know the default pointer type. Many 
embedded developers do not use pointers extensively as they are very CPU 
intensive. This is especially true with the far pointer double byte values. 
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13. The C Preprocessor 
Every C language environment has a preprocessor. As the name suggests, the 
preprocessor examines program code before it is processed by the compiler. 
The preprocessor reads a source code file line by line and performs the 
preprocessor directives it finds. 

The preprocessor does not understand the C language. This can be a source of 
great trouble for program developers as it is easy to miss problems caused by 
passing the preprocessor invalid commands. Two common errors are including 
a semicolon to terminate a macro definition and placing a comment on the 
same line as a directive. Since the preprocessor does not understand the C 
interpretation of semicolons or comments it will attempt to read these things as 
part of the directive.  

Some C environments support an option which invokes only the preprocessor 
for a source file. This has the advantage of letting you look at the preprocessor 
results before the source gets passed to the compiler.  

13.1 Preprocessor Directive Syntax 

Any source code line that begins with the hash character, #, is a command to 
the preprocessor and is called a preprocessor directive. It is good practice to 
justify these directives against the left hand margin to distinguish them from 
your C code. Historically, pre-ANSI compilers required preprocessor directives 
to begin in column one of a source code line. This practice should not be 
followed when you nest directives: 

#if DEBUG 
 #include <debug.h> 
#endif 

Example 109: Nesting preprocessor directives  

The hash character must be the first non-white space character in a 
preprocessor directive. When a line begins with # the preprocessor assumes 
that the entire line is part of the same directive. To continue a single directive 
past a single line place the continuation character \ at the end of the line. When 
this character appears the preprocessor attaches the contents of the next line to 
the end of the current directive. 
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13.2 White Space in the Preprocessor 

Unlike the C compiler, white space is very important to the preprocessor. For 
example, in C both the following function definitions are acceptable: 

int smallest (int arg1, int arg2); 
int largest(int arg1, int arg2); 

The preprocessor is not so forgiving. Only one of the following two macros 
performs as expected: 

#define SMALLEST (arg1,arg2) ((arg1)<(arg2)?(arg1):(arg2)) 
#define LARGEST(arg1,arg2) ((arg1)<(arg2)?(arg1):(arg2)) 

SMALLEST is defined as an object macro or symbolic constant, not as a function 
macro like LARGEST as intended. Thus a call to SMALLEST will be expanded 
by the preprocessor into the monstrosity:  

 (arg1,arg2)((arg1)<(arg2)?(arg1):(arg2))(oneInt,twoInt);    

13.3 File Inclusion 

The #include directive instructs the preprocessor to replace the directive 
with the contents of a specified file. That file need not contain C source code; 
for example, it can consist of nothing but preprocessor directives. In embedded 
system programs a header file which describes the resources of the target 
hardware is usually included: 

#include <machine.h> 

When the preprocessor sees this directive it will look for the file machine.h 
and replace the directive with the contents of machine.h. The preprocessor 
will then continue searching through source code. The next line it will look at 
will be the first line of the machine.h file. 

If the preprocessor cannot find the specified file, it will give an error and quit 
processing. Where does the preprocessor look for the file? 
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13.3.1 File Inclusion Searches 

<filename.h>  
If you surround the file name with angle brackets the preprocessor will look for 
the file in a system dependent location determined by the compiler you are 
using. 

In general, angle brackets produce two types of searching. On some systems, 
the preprocessor will look through a directory or list of directories you have 
specified as containing the library and header files for your compiler. On other 
systems the preprocessor will look through a directory or list of directories 
specified in the operating system environment as a location for commands. 

“filename.h”  
If you surround the file name with double quotes, the preprocessor behaviour 
is more complex.  

1) The preprocessor looks for the file in a system dependent location. This may 
be the same location used for <> inclusion; however, it usually is not. If 
the preprocessor searches for include files in a single location, the 
preprocessor does not support “” inclusion and treats it as <> inclusion. 

2) If the file is not found, the preprocessor will retry the directive as if the file 
were surrounded by angle brackets. 

In general practice, the double quotes signal the preprocessor to look for the 
file in the same place as the source code file containing the directive. 

NOTE 
If the preprocessor can not find the file in the place for “” inclusion it will reprocess 
the directive as if it used <> inclusion syntax. 
The common misconception that “” inclusion refers to the current directory can lead 
to errors. You must check your compiler documentation to determine exactly where 
and how “” and <> inclusion look for files. 

 

13.4 Defining Symbolic Constants 

The #define directive instructs the preprocessor to create a symbolic 
constant.  
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#define MAXINT +32768 
This directive creates a symbolic constant MAXINT and associates it with a 
value of +32768. Here we intend MAXINT to stand for the largest 16 bit 
signed integer value the target hardware can represent. 

When the preprocessor reaches the #define directive it places MAXINT into 
its list of defined symbols. The preprocessor will replace MAXINT with its 
defined value in any subsequent lines that contain the MAXINT symbol.  

The association of this symbolic constant with its value is not passed on to the 
compiler. When the compiler examines the source file, the symbol MAXINT 
does not appear – the preprocessor has replaced it with the appropriate value. 
Symbol expansion does not happen within other preprocessor directives. You 
can use symbolic constants inside macro definitions, but the expansion of the 
symbol happens after the macro expansion. The symbol is first placed in the 
source code and then expanded. 

There are two main reasons why symbolic constants are useful: 

!!!! Symbolic constants clarify ambiguous source code 
You can place a meaningful word in your source code, instead of a potentially 
ambiguous value. For example, the number 3.0e+5 might not be clear. 
However, suppose we include the following directive:  

#define LIGHTSPEEDkps 3.0e+5 

You can see that the symbol might convey more meaning in the code than its 
value alone. 

"""" Symbolic constants facilitate code maintenance 
Symbolic constants, like variables, reduce typing errors. Once MAXINT  is 
defined its value is assigned in a single location in your source code. If you need 
to change the value of MAXINT  you need only edit the #define directive 
and recompile. Without the directive you would have to change every 
occurrence of the value in your program. Additional problems are encountered 
if the same value has different meanings.  

13.4.1 The #undef directive 

You may want to redefine the value of a symbolic constant. The preprocessor 
may give an error if you attempt to define a symbol that is already defined. 
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According to the ANSI standard you can redefine a symbolic constant with a 
replacement string which is exactly similar. Despite this, it is best to be 
scrupulous about using #undef for symbols before you redefine them. 

You must tell the preprocessor to remove the symbol from its list before you 
can redefine it. 

#undef MAXINT 
#define MAXINT +127 

Example 110: Redefining a constant using #undef 

Suppose you have a small set of functions that you want to keep 8 bit portable, 
while allowing remaining functions to use 16 bit int values. The following 
directives would be used: 

1) Define MAXINT for 16 bit  #define MAXINT +32768 
2) Undefine MAXINT    #undef MAXINT 
3) Define MAXINT for the 8 bit  #define MAXINT +127 

Undefining a symbol has no effect if a symbol is not defined, the preprocessor 
simply ignores the #undef directive. 

13.4.2 Defining “empty” symbols 

Another useful feature of symbolic constants is that they do not have to be 
defined with associated values. For example: 

#define 8BITINT 

This directive instructs the preprocessor to place the symbol 8BITINT into its 
symbol list with no associated value. If you use the symbol in your code the 
preprocessor replaces it with nothing. This can easily lead to compiler errors. 

13.5 Defining Macros 

Function macros are a powerful aspect of the C preprocessor. Macros are 
defined using the #define directive. 

A function macro is a replacement macro with an argument list. When the 
preprocessor encounters a macro reference it performs a text replacement and 
retains the arguments listed with the macro in the source code. The 
preprocessor can provide a means for data abstraction – each invocation of a 
function macro deals with different values in a predictable way. 
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A simple example will clarify the behaviour of macros: 
#define SMALLEST(arg1,arg2) ((arg1)<(arg2)?(arg1):(arg2)) 
 
// program code 
someInt = SMALLEST(oneValue, twoValue); 

Example 111: Defining and calling a macro 

The #define in Example 111 creates a macro called SMALLEST which 
returns the smaller of two arguments. The line which calls the function macro 
looks as follows after it has been processed by the preprocessor: 

someInt = ((oneValue)<(twoValue)?(oneValue):(twoValue)); 

NOTE 
Because a function macro looks similar to a function call it can be difficult to tell 
macro functions and regular functions apart. It is good coding practice to use upper 
case for all macro names so they are easily distinguished from functions code. 

 

13.5.1 Macro Expansion 

You can pass expressions as arguments to a function macro. There is a 
difference between passing expressions to macros and passing them to 
functions. When you pass expressions to functions they are first evaluated and 
the resulting values are received by the function. As the preprocessor simply 
performs text replacement; it does not evaluate expressions passed to a macro. 
For this reason you must use macros carefully. For example, here is a common 
macro error: 

#define SQUARE(x) x * x 
Consider the following call to SQUARE: 

someInt = SQUARE(a+1); // before expansion 
someInt = a+1 * a+1; // after expansion 

C precedence rules produce an unintended result from this calculation. The use 
of  parentheses is important in a macro definition using expressions. A better 
definition of SQUARE looks like: 

#define SQUARE(x) ((x) * (x)) 
The parentheses around each parameter reference will preserve the expression’s 
internal precedence and the parentheses around the macro will preserve its 
precedence with respect to other code. 
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Even with parentheses, using SQUARE as follows will produce unexpected 
results: 
someInt = SQUARE(a++); // before expansion 
someInt = ((a++) * (a++)); // after expansion 

Because a is not evaluated in the same manner as it would be in a function call, 
it is evaluated twice at compile time and a is incremented before the 
multiplication. If SQUARE were a function, a would have been evaluated once 
at compile time and the resulting value passed to the function. You can see the 
value in clearly distinguishing the function and macro names. 

NOTE 
Using any expression that causes side effects as an argument to a macro or a 
function call is not good practice and can cause unexpected results.  

 

13.5.2 # and ## Operators 

To expand macro parameters inside quotes you need to use the # and ## 
operators 

13.6 Conditional Source Code  

The preprocessor supports directives which allow conditional compilation of 
your source code. You can bracket program portions and let the preprocessor 
decide whether or not to pass these portions of the code on to the compiler. 

13.6.1 #if and #endif 

The #if and #endif directives include code when the #if expression 
evaluates to a non-zero integer value: 

#define DEBUG 1 
#if DEBUG 
 #include <debug.h> 
#endif 

Example 112: Using #if and #endif to conditionally compiler code 

Blocks of code such as that in Example 112 are often used to produce both a 
debugging and final version of a program. The first line defines the DEBUG 
symbol with the value 1. The #if directive tests its argument expression to see 
if it has a non-zero constant integer value. When DEBUG has a non-zero value, 
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the preprocessor will #include a header file created for debugging called 
debug.h. 

Because #if accepts an expression as an argument, you can also do the 
followings to check for the value assigned a symbolic constant: 
#define DEBUG_STATE 1 
#if DEBUG_STATE == 1 
 #include <debug1.h> 
#endif 

Example 113: Using expressions in #if directives for conditional compilation 

13.6.2 The defined( ) Function 

The constant integer expression tested by #if cannot contain the sizeof() 
function, type casts, or enum constants. However, you can use the 
defined() function with #if directives. The defined() function 
returns 1 if its argument is a defined symbol. If the symbol is not defined, it 
returns 0. Therefore, we can rewrite Example 113 as follows: 

#define DEBUG 
#if defined(DEBUG) 
 #include <debug.h> 
#endif 

Example 114: Using the defined() function for conditional compilation 

You can also use !defined() to test if a symbol has not been defined. It will 
return 1 if its argument is not a defined symbol and 0 if the argument is defined: 
#if !defined(DEBUG) 
 #include <machine.h> 
#endif 

Example 115: Using !defined() to test if a symbol has not been defined 

13.6.3 The #else and #elif Directives 

The C preprocessor includes the ability to choose between two compilation 
blocks using the #else directive. For example, suppose that the debug header 
file includes descriptions of target resources. To avoid including these twice, 
you could write: 
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#define DEBUG 1 
#if DEBUG == 1 
 #include <debug.h> 
#else 
 #include <machine.h> 
#endif 

Example 116: Using #else and #elif to choose between compilation blocks 

 
If you want to build a switch-like structure of compilation blocks, use the 
#elif directive inside a #if and #endif pair. You can use as many #elif 
directives as necessary but you can only have one #else, which must come 
after the #elif directives. 

#define STATE DEBUG 
#if STATE == DEBUG 
 #include <debug.h> 
#elif STATE == TESTING 
 #include <testing.h> 
#elif STATE == RELEASE 
 #include <machine.h> 
#endif 

Example 117: Using #elif, #if and #endif for conditional compilation 

13.6.4 #ifdef and #ifndef 

If you do not use the defined or !defined operators in a directive, you 
can use the directives #ifdef or #ifndef. #ifdef FOO is equivalent to 
#if defined(FOO) while #ifndef FOO is equivalent to 
#if !defined(FOO): 

#define DEBUG 
#ifdef DEBUG 
 #include <debug.h> 
#endif 
#ifndef DEBUG 
 #include <machine.h> 
#endif 

Example 118: Using #ifdef and #ifndef  

13.7 Producing Error messages 

The #error directive halts the preprocessor and produces a specified error 
message. Most compilers provide additional information with your message, 
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such as the name of the source file and the position of the error directive within 
that file: 

#if STATE == DEBUG 
  #include <debug.h> 
#elif STATE == RELEASE 
  #include <machine.h> 
#else 
  #error Bad or missing STATE value: need DEBUG or RELEASE 
#endif 

Example 119: Using the #error directive  

13.8 Defining Target Hardware 

The standard C environment allows the definition of compiler-specific 
extensions with the #pragma preprocessor directive. The preprocessor may 
deal with #pragma directives in your source code or it may be the compiler 
which acts upon these directives. 

ANSI C has one prescribed rule about #pragma directives – if a #pragma 
directive is not recognised, it is ignored it and passed on. This ensures that 
#pragma directives that are unknown will not affect your code. 

The #pragma directive is used most commonly in embedded development to 
describe specific resources of your target hardware such as available memory, 
ports, and specialized instruction sets. 

13.9 In-line Assembly Language 

While not required by ANSI C, most embedded development compilers 
provide a means of incorporating assembly language in C programs. One 
common way of accomplishing this is using preprocessor directives. 

13.9.1 The #asm and #endasm Directives 

Some compilers use #asm and #endasm directives to signal assembly 
language code boundaries. Everything lying between the directives is assumed 
to be assembly language code and will be processed by a macro assembler 
which is either built-in to the compiler or a secondary program called by the 
compiler. 
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14. Libraries 
Technically, a library in C is simply a collection of C functions. Libraries usually 
contain functions which serve a common purpose, such as interfacing to an 
LCD, using a timer, providing mathematical capabilities, or converting data 
types. The functions within a library are a collection of the basic operations 
defined by the scope of the library. For instance a math library would contain 
routines for multiplication, division, and modulus. 

Because high level languages are very portable, libraries written in high level 
languages are also very portable. Portability is made possible by the 
standardization of high level languages such as C. C language code written on a 
PC will compile and run on MAC or UNIX machines often with little or no 
alternation. Similarly, C code written for a specific 8 bit microcontroller can be 
compiled and run on a different microcontroller with very minor changes to the 
code. 

Although libraries for math and data type conversion are useful, they are not 
the libraries most useful in embedded systems development. By definition a 
microcontroller embedded within a system needs to receive data in and sends 
data out. This is most often done with devices such as keyboards, LCD 
displays, serial interfaces, and I/O ports. At times it is necessary to convert this 
data to a specific format so that it can be understood. Devices such as Analog 
to Digital and Digital to Analog converters provide such conversion 
capabilities. Libraries which support peripheral devices are very useful in 
embedded systems development.   

14.1 Portable Device Driver Libraries 

C’s portability allows us to implement Portable Device Driver libraries. A 
portable device driver is a standard technique for using a specific peripheral 
device with a range of different microcontrollers, both between and within 
microcontroller families. Why would we want to do this? The main reason is to 
save development time. In the embedded marketplace time to market is 
probably the most important mitigating factor in the design process.  

The advantages realized with portable device driver libraries are: 

1) We do not need to  “reinvent the wheel”. Device drivers would not have to 
be rewritten for every new project. 
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2) The libraries have been thoroughly tested and debugged allowing faster 
hardware/software integration 

3) The embedded programmer does not need to know the low level hardware 
details of how the device operates.  

4) Support for multi-controller systems which use microcontrollers from 
different families. C source code can be ported between families by 
changing the included header file. This saves the embedded programmer 
from having to learn implementations on different microcontroller. 

5) Software reusability is maximized.  

Some useful portable libraries would provide routines for: 
1) SPI (Serial Peripheral Interface) 
2) Microwire 
3) SCI (Serial Communications Interface) 
4) UART (Universal Asynchronous Receiver Transmitter) 
5) USART (Universal Synchronous Asynchronous Receiver 

Transmitter) 
6) Analog to Digital conversion and Digital to Analog Conversion 
7) I/O ports 
8) LCD displays 
9) PWM (Pulse Width Modulation) 
10) Timers 

14.2 An Example Development Scenario 

Suppose you have been given the task of implementing a SPI serial interface 
between a Microchip PIC16C74, National COP8SAA and a Motorola 
68HC05C8. You have only programmed for the Microchip PIC and you are not 
familiar with SCI serial interfaces. You could learn how SPI works, find out 
how it is implemented on the different chips, learn how to code for the 
different chips, write drivers for each chip, and then finally debug the hardware.  
This development process could take a very long time! By drawing on a 
portable library for the SPI you can write C code using library functions and 
avoid delays in project development.  
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14.2.1 How SPI Works 

SPI is a synchronous a three wire serial communications interface based on a 
master/slave relationship. The master and slave both contain serial shift 
registers that are connected to form a circular shift buffer. The master supplies 
the clock which is used to shift data out of the master and into the slave and 
simultaneously out of the slave and into the master.  

SPI is implemented in many different ways, but the same basic functionality 
holds for each implementation. For example, the COP8SAA7 has a Microwire 
Plus serial interface which SPI compatible. The 68HC05C8 contains the SIOP 
serial interface which is also SPI compatible. The Microchip PIC16C74 calls its 
SPI device SPI. Each of these devices has specific names and techniques for 
SPI serial communication. Using portable libraries we can avoid the confusion 
involved in using many different device-specific routines. 

The following C program performs master functions. The example shown is 
configured for the Microchip PIC16C74: 
#define NOLONG  //unique to the MPC series of header files 
#define REC_SIZE 5 
//Use the proper header and driver for the COP8 and 68HC05 
#include  "16c74.h"  
#include  "SPI.MPC” 
 
char SPI_in[REC_SIZE]; 
const char o[] = {0b10000001,0b10000010,0b01000100, 
                  0b00001000, 0b00010000}; 
 
void main(void){ 
  SPI_array_get(SPI_in); //set the array to store data in 
  SPI_array_send(o); //sets the array to send data from 
  //The following statement configures the SPI 
  //The argument that is passed depends on the desired   
  //configuration. The instructions on how to set this   
  //are found in the device driver headers 
  SPI_set_master(0b00100000);  
  SPI_flush();  //send a byte to get everything synched  
  SPI_send_rec(0,4); //initiate the send/receive function 
   
  while(1){ 
  } 
} 

Example 120: Master function for PIC16C74 SPI communication 

The master source code in Example 120 can be compiled for different chips 
with very minor changes and the library calls would work as expected.  
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The library calls are those which begin with the letters SPI such as 
SPI_array_get(SPI_in), SPI_array_send(o);, 
SPI_set_master(0b00100000);, SPI_flush(); and 
SPI_send_rec(0,4);. We will now examine some of these functions in 
detail by looking at excerpts from specific device libraries.  

14.2.2 SPI_set_master(ARGUMENT); 

This function configures the SPI. The following sections describe how it is 
implemented in the libraries for the individual chips. 

On the Microchip PIC16C74 
The SPI functions may be used when the synchronous serial port on the 
Microchip PIC is configured in SPI mode. You must configure the SSPCON 
register when using SPI. The SSPCON set up for SPI is: 

SSPM<3:0> 
"# 0000 SPI master clock = osc/4 
"# 0001 SPI master clock = osc/16 
"# 0010 SPI master clock = osc/64 
"# 0011 SPI master clock = TMR2_output/2 
"# 0100 SPI slave mode, clock = SCK pin, SS pin control enabled 
"# 0101 SPI slave mode, clock = SCK pin, SS pin control disabled, SS can 

be used as I/O pin 

CKP<4> 
"# 1   Transmit on falling edge, receive on rising edge. Idle clock is high 
"# 0   Transmit on rising edge, receive on falling edge. Idle clock is low 

SSPEN<5> 
"# 1  Enable serial port, configure SCK, SDO and SDI as serial port  pins 
"# 0   Disable serial port, configure pins as I/O 

SSPOV<6> 
"# 1   A new byte is received while SSPBUF register still holds previous 

data. If an overflow occurs the data in SSPSR is lost. Overflow can only 
occur in slave mode. The user must read SPBUF to avoid setting the 
overflow. In master mode the overflow bit is not set since each new 
reception and transmission is enacted by writing to SSPBUF 
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WCOL<7> 
"# 1   The SSPBUF register is written while transmitting the previous 

word. Must be cleared in software. 
"# 0   No Collision 

/*========================================= 
This function configures the SPI and sets up the proper 
pins for serial port operation.  
ARGUMENTS: 
temp, The byte to set the SPI 
======================================================*/ 
 
void SPI_set_master(registerw temp){ 
   SSPCON = temp; 
   TRISC.SDI = 1; //configure TRIS register for serial  
   TRISC.SDO = 0; 
   TRISC.SCK = 0;         
} 

Example 121: Setting up the SPI on the Microchip PIC16C74 

On the Motorola 68HC05 
/*=============================================== 
This function configures the SPI and sets up the proper 
pins for serial port master mode operation.  
ARGUMENTS: 
NONE 
==================================================*/ 
 
#define SIOP_set_master() SCR.SPE = 1; SCR.MSTR = 1; 
 
//this is used to create a uniform interface 
#define SPI_set_master(ARG) SIOP_set_master()  

Example 122: Setting up SPI on the Motorola 68HC705C8 

On the National Semiconductor COP8 
/******************************************************* 
This function sets the MW in master mode and sets the SK 
clock time and sets the SO and SK pins on port G. 
ARGUMENTS: ARG1.0 = CNTRL.SL0, ARG1.1 = CNTRL.SL1 
CONFIGURATION  SK Cycle Time 
CNTRL.SL0=0 CNTRL.SL1=0 2Tc 
CNTRL.SL0=0 CNTRL.SL1=1 4Tc 
CNTRL.SL0=1 CNTRL.SL1=X 8Tc 
*********************************************************/ 
 



Libraries 

166 

#define MW_set_master(ARG1) {CNTRL.SL0= ARG & 0b00000001;\ 
                             CNTRL.SL1= 0b00000010 & ARG;\ 
              master();} 
 
void master(void){ 

PORTGC.4 =1;  
PORTGC.5 =1;  

 PORTGC.6 = 0; 
PORTGD.6 = 1;  
CNTRL.MSEL = 1; 

} 
//an alias to create a uniform library 
#define SPI_set_master(ARG) MW_set_master(ARG)  

Example 123: Setting up SPI on the National COP8SAA7 

14.2.3 SPI_send_rec(0,4); 

This function initiates the send/receive function. The following sections show 
the device specific functions. The function starts at array index 0 of the receive 
and transmit arrays and transfers information up to index 4. With SPI 
information is received and transmitted at the same time. 

On the Microchip PIC16C74 
/*================================================== 
This function sends several data bytes from  ARRRAY_SEND  
and places the contents in the ARRAY_GET array. This 
function uses polling. This function assumes that the 
returned data is important and stores it in an array 
 
ARGUMENTS: 
ARG2 is a pointer to the array or data you wish to send  
ARG3 n is the array index to start from   
ARG4 offset is the array index to go up to 
================================================*/ 
 
#define SPI_send_rec(ARG2, ARG3, ARG4) \ 

SPI_array_send(ARG2); \ 
SPI_send_rec2(ARG3, ARG4); 
 

void SPI_send_rec2(n, offset){ 
     offset = offset+1; 
     ARRAY_SEND = ARRAY_SEND + n; 
     while(n != offset){ 
    SSPBUF = *ARRAY_SEND;//SPI_out[n]; // load SSPBUFF 

// wait for the  BF flag to indicate  
// transmission is done 

    while(SSPSTAT.BF == 0){  
    }                       
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    *(ARRAY_GET+n) = SSPBUF;  //store returned byte  
        ARRAY_SEND = ARRAY_SEND + 1 ; 
        n=n+1;  
     } 
} 

Example 124: Initiating SPI send/receive on the Microchip PIC16C74 

On the Motorola 68HC05 
 

/*================================================= 
This function sends several data bytes from ARRRAY_SEND  
and places the contents in the ARRAY_GET array. This 
function uses polling. This function assumes that the 
returned data is important and stores it in an array 
ARGUMENTS: 
n, ARG3 is the array index to start from 
offset, ARG4 is the array index to go up to 
ARG2 is the array you wish to send from 
===============================================*/ 
 
#define SIOP_send_rec(ARG2,ARG3,ARG4)\ 
    SPI_array_send(ARG2); \ 

SPI_send_rec2(ARG3, ARG4); 
 
void SIOP_send_rec2(n, offset){ 
     offset = offset+1; 
     ARRAY_SEND = ARRAY_SEND + n; 

 
while(n != offset){ 

        SDR = *ARRAY_SEND;// 
   SPI_out[n];   // load the SSPBUFF 

        //SPIF flag indicates transmission is done 
        while(SSR.SPIF == 0){   
        }                       
        *(ARRAY_GET+n) = SDR;  //store the returned byte  
        ARRAY_SEND = ARRAY_SEND + 1 ; 
        n=n+1;  
    } 
} 
//note the use of an alias! 
#define SPI_send_rec(ARG2,ARG3,ARG4) \ 
        SIOP_send_rec(ARG2,ARG3,ARG4) 

Example 125: Initiating SPI send/receive on the Motorola 68HC705C8 

On the National Semiconductor COP8 
 

/*================================================== 
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This function sends several data bytes from  ARRRAY_SEND  
and places the contents in the ARRAY_GET array. This 
function uses polling. This function assumes that the 
returned data is important and stores it in an array 
ARGUMENTS: 
n is the array index to start from 
offset is the array index to go up to 
=================================================*/ 
#define MW_send_rec(ARG2, ARG3, ARG4) \ 
        MW_array_send(ARG2); \ 
        MW_send_rec2(ARG3, ARG4); 
 
void MW_send_rec2(n, offset){ 
        offset = offset+1; 
        ARRAY_SEND = ARRAY_SEND + n; 
        while(n != offset){ 
           SIOR = *ARRAY_SEND; // load the SIOR 

  PSW.BUSY = 1; 
    //BUSY flag to indicate transmission done 

while(PSW.BUSY == 1){                                    
// transmission is complete,  

      }                       
  *(ARRAY_GET+n) = SIOR;  //store returned byte  
           ARRAY_SEND = ARRAY_SEND + 1 ; 
           n=n+1;  
        } 
} 
//note the use of an alias! 
#define SPI_send_rec(ARG2, ARG3, ARG4) \  
        MW_send_rec(ARG2, ARG3, ARG4) 

Example 126: Initiating SPI send/receive on the National COP8SAA7 

14.3 Device Driver Library Summary 

As we can see from the individual functions, the library prevents the user from 
having to know the specific hardware configuration of each processor. In 
particular, the use of aliases allows the user to refer to the functions in the most 
familiar way possible. One user might be most familiar with the Microchip PIC 
and wish to refer to the functions as SPI. However, another user might be most 
familiar with the National COP8 and wish to refer to the functions as MW 
(Microwire). 
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15. Sample Project  
This section covers a sample embedded system project. The project interfaces a 
microcontroller with a SPI (UART) peripheral to a PC via the RS-232 port. The 
most common and easiest technique for interfacing to a PC is to use the parallel 
port where there are eight parallel bits for input and output. However, it is very 
easy to damage the parallel port. On PCs with the parallel port on the 
motherboard a damaged parallel port can require a new motherboard.  

The serial port is more complicated but it is a much better tool for interfacing 
to a desktop PC. It is very difficult to damage your computer by manipulating 
the serial port. Also, the hardware is almost universally standard. Once you 
build an embedded system with RS-232 support you can hook it up to a PC,  
MAC, or another embedded system merely by changing the interface software 

This project will introduce some key embedded system programming concepts 
such as interrupts, registers, and peripherals.  

15.1 Project Specifics 

The project uses the portable device driver libraries discussed in Section 14, 
Libraries. The specific hardware implementation will be on a Microchip PIC 
16C74. The code is written using Borland C functions. If you do not use 
Borland these functions are most likely supported by your favourite compiler, 
where they may have slightly different names. 

15.2 Project Foundations  

The concepts and terminology necessary for this project are discussed in the 
following sections. 

15.2.1 Asynchronous 

Devices that are synchronized in the electronics world use the same clock and 
their timing is in synchronization with each other. Things that are asynchronous 
have their own timing and clocks. In the world of serial communications it is 
easy to tell if something in synchronous or not: if there is a clock line it is 
synchronous, if there is no clock line it is asynchronous. 



Sample Project 

170 

15.2.2 SCI   

SCI is an asynchronous serial interface also know as UART (Universal 
Asynchronous Receiver Transmitter). You may also see chips with a USART or 
SPI with synchronous modes, this is still fundamentally the same as the SCI 
interface but with the additional option of selecting a synchronous interface.  
The timing of this signal is compatible with the RS-232 serial standard but the 
electrical specifications are not compatible and will require a transceiver. 

15.2.3 RS-232 

Computers like to operate with parallel data. Serial transfers occur by 
transfering parallel data to serial and then transfering it back into parallel data. 
There is a component called a shift register that can perform these 
transformations. The shift register uses an internally generated clock to shift 
data in and out. It can shift in serial and shift out parallel or it can shift in 
parallel and shift out serial data.  

How do the reciever and the transmitter keep the same clock rate? The answer 
is that they both agree ahead of time on a baud rate. The baud rate is the 
number of times per second that the serial port changes its state. The receiver 
and transmitter must use the same baud rate. 

In order to explain how the reciever and transmitter stay synchronised we must 
examine a typical RS-232 signal which represents the byte 01010011 in serial 
format: 

           

IDLE Start Bit 0 Bit 1 Bit 2 Bit 3 Bit 4 Bit 5 Bit 6 Bit 7  Stop 
Figure 10: RS-232 signal 

An idle serial line going from high to low is a signal to start receiving data. By 
using the baud rate, the receiver knows exactly how long each bit will  be, so it 
can distinguish bits from each other. After 8 bits are received the line goes high 
again and the receiver waits for the next start bit. After a byte has been received, 
it can be taken from the serial port receive register and used by the computer. 

The transmitter hardware handles the start and stop bits. Usually all we have to 
do is load up the serial port transmit register and wait for an interrupt or use 
device polling to determine when the transmission is complete. 
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15.3 Electrical Specifications 

We mentioned that we need a transceiver to connect the PIC17C74 to an RS-
232 serial port. This is because the RS-232 standard specifies voltages that are 
much different from the 0-5 volts typically used by microcontrollers. RS-232 
uses what is called a push-pull system to transmit information. This push pull 
ranges from sending a 1 (called a mark) as -3 to -25 volts and a 0  (called a 
space) as +3 to +25 volts. These voltages allow for less distortion and longer 
cable lengths. 

15.4 PIC Implementation 

The PIC 16C74 contains a hardware SPI port that lets us transmit 
asynchronous serial data. We can be notified by interrupt or by polling when 
the chip has finished sending or receiving a byte. We will examine the serial port 
on the PC in detail. 

15.4.1 Anatomy of a PC serial port 

The concept of memory mapped peripherals on microcontrollers was discussed 
in Section 2 Microcontroller Overview and Section 3 The Embedded 
Environment. You will recall that the input and output devices are accessed as 
memory locations. The PC works exactly the same way. It has four serial ports 
known as: 

NAME ADDRESS IRQ 

COM1 0x03F8 4 
COM2 0x02F8 3 
COM3 0x03E8 4 
COM4 0x02E8 3 

Table 10: PC serial port addresses and interrupts 

The next time your PC boots, examine the screen which contains the BIOS 
information. The BIOS will tell you what serial ports you have and will display 
their hex address.  The column “IRQ” in Table 10 is the name of the interrupt 
that is associated with the port.  
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15.4.2 A Note On Chip Sets 

Depending on the vintage of your computer you may have any one of the 
following UART chips: 

CHIP COMMENTS 

8250,8250A, 8250B These were the first UARTS.  
16450, 165501, 
6550A 

These are what the majority of you will have. 16450 was 
used in AT’s but is still quite common. The 16550 had 
some problems and was replaced by the 16650A which 
has a 16 byte FIFO 

16650 The newest UART. 
Table 11: UART chips 

What is a FIFO?   
A FIFO is a buffer. FIFO stands for First In First Out. A UART with a FIFO 
can store data and therefore does not have to interrupt the CPU as often 
because it can transfer many bytes at each interrupt service. 

The variety of UART chips does not affect software development a great deal. 
The UART chips are all supersets of previous UARTs. Unless you are 
interested in super high performance communications, you can program these 
chips in exactly the same way. Of course, if you run code for FIFO chips on 
FIFOless chips the FIFO will not be working. For reasons of simplicity and 
portability the code in this book will not use a FIFO. 

15.4.3 IRQ 

Everything you know about interrupts from embedded systems holds true for 
larger computers. However, the memory address range is much bigger so 
vectors will be several bytes.  

The original PC was designed with 256 interrupt vectors for both hardware and 
software. These were each 4 bytes in length for a total of 1024 (256 ' 4) bytes 
in memory. As a whole this areas of memory is called the interrupt vector table. 
For example, INT 0 uses memory locations 0x00000, 0x00001, 0x00002 and 
0x00003 while INT8 uses the four bytes at 0x0020, 0x0021, 0x0022 and 0x0023.  

Eight hardware interrupts beginning at INT8 are reserved. They are called 
IRQ0-IRQ7,  thus IRQ0 corresponds to INT8, IRQ1 to INT9 and so on. 
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Now that we know about the vector table we have to examine a few other 
registers: 

Address 
BASE + 

Read/Write Abbreviation Name 

0    (DLAB = 0) W  Transmit Holding Buffer 
0    (DLAB = 0) R  Receiver Buffer 
0    (DLAB = 1) R/W  Divisor Latch Low Byte 
1    (DLAB = 0) R/W  Divisor Latch High Byte 
1    (DLAB = 1) R/W IER Interrupt Enable Register 
2 R IIR Interrupt Identification 

Register 
2 W FCR FIFO Control Register 
3 R/W LCR Line Control Register 
4 R/W MCR Modem Control Register 
5 R/W LSR Line Status Register 
6 R MSR Modem Status Register 
7 R/W  Scratch Register 

Table 12: COM port registers 

The table depicts the registers associated with each COM port. The registers are 
located at the base port address plus an offset. For example, the Line Status 
Register for COM1 is at 0x03FD = (0x03F8 + 5). The DLAB bit is similar to a 
paging bit, it allows the access of different registers at the same address. For 
example, to access the IER set the DLAB bit and access BASE +1. 

The following paragraphs describe each register: 

Transmit Holding Buffer 
Used to read a byte off the UART. 

Receive Holding Buffer 
A write to the receive holding buffer is used to transmit a byte on the UART. 

Divisor Latch High/Low  
These two registers allow us to select a baud rate. On the UART there is a 
1.8432 Mhz crystal, which the UART divides by 16. If we used this frequency 
the baud rate would be 115200 hertz. This rate is too fast to communicate with 
300 BAUD modems.  To get different speeds we can write a 16 bit number to 
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the  Divisor Latch Low/High registers and the baud rate is changed to 115200 
/ Divisor. For example, for a 2400 BAUD rate, we want the divisor to be 48 
(115200/2400 = 48). We write 48 (or 0x30) into these two registers by placing 
0x00 in the high byte register and 0x30 in the low byte register. 

Interrupt Enable Register 
Bit 
Number 

Description 

BIT 0 Enable Received Data Available Interrupt  If we set this bit, the UART 
will issue an interrupt when received data is available. 
NOTE: if you have a 16550 or newer UART this enables FIFO time 
out interrupts 

BIT 1 Enable Transmitter Holding Register Empty Interrupt. This will 
interrupt when the transmit register is empty. 

BIT 2 Enable Receiver Line Status Interrupt: Not used in this Project 
BIT 3 Enable Modem Status Interrupt: Not used in this Project 
BIT 4 RESERVED 
BIT 5 RESERVED 
BIT 6 RESERVED 
BIT 7 RESERVED 

Table 13: Interrupt enable register bits 
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Interrupt Identification Register 
Bit Number Description 

BIT 0 0 
1 

Interrupt Pending 
No Interrupt Pending 

BIT 1 
0 
1 
0 
1 

BIT 2 
0 
0 
1 
1 

 
Modem Status Interrupt 
Transmitter Holding Register Empty Interrupt 
Received Data Available Interrupt 
Receiver Line Status Interrupt 

BIT 3 0 
1 

Reserved on 8250 16450 
16550 Time-out Interrupt Pending 

BIT 4 Reserved 
BIT 5 Reserved 
BIT 6 
0 
0 
1 

BIT7 
0 
1 
1 

 
No FIFO 
FIFO Enabled but Unusable 
FIFO Enabled 

Table 14: Interrupt identification register 

FIFO Control Register 
Bit Number Description 

BIT 0 Enable FIFO - turn on the FIFO.  
BIT 1 Clear Receive FIFO - erase the receive buffer 
BIT 2 Clear Transmit FIFO - erase the Transmit Buffer 
BIT 3 DMA mode select - Not used by this project 
BIT 4 Reserved 
BIT 5 Reserved 
BIT 6 
0 
0 
1 
1 

BIT 7 
0 
1 
0 
1 

Interrupt Trigger Level - Only if chip has a FIFO 
1 Byte 
4 Bytes 
8 Bytes 
14 Bytes 

Table 15: FIFO control register  
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Line Control Register 
Bit Number Description 

BIT 1 
0 
0 
1 
1 

BIT 0 
0 
1 
0 
1 

Word Length - select how many bits to send in each 
message. 
5 bits 
6 bits 
7 bits 
8 bits 

BIT 2  
0 
1 

Length of Stop Bit 
One Stop Bit 
2 Stop bits for words of length 6,7,8 bits or 1.5 Stop 
bits for word lengths of 5 bits 

BIT 3 
0 
1 
1 
1 
1 

BIT 4  
DC 
0 
1 
0 
1 

BIT 5 
DC 
0 
0 
1 
1 

Parity Select 
None 
Odd 
Even 
High Sticky 
Low Sticky 

BIT 6 Set Break Enable  
BIT 7 1 

0 
Divisor Latch Access Bit - DLAB Remember this guy 
Access to Receive  

Table 16: Line Control Register 

Modem Control Register 
Bit 
Number 

Description 

BIT 0 Reserved 
BIT 1 Reserved 
BIT 2 Reserved 
BIT 3 Loop Back Mode 
BIT 4 Aux Output 2 
BIT 5 Aux Input 1 
BIT 6 Force Request to Send 
BIT 7 Force Data Terminal Ready 

Table 17: Modem Control Register 
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Line Status Register 
Bit 
Number 

Description 

BIT 0 Error in Received FIFO 
BIT 1 Empty Data Holding Registers 
BIT 2 Empty Transmitter Holding register 
BIT 3 Break Interrupt 
BIT 4 Framing Error 
BIT 5 Parity Error 
BIT 6 Overrun Error 
BIT 7 Data Ready 

Table 18: Line Status Register 

Modem Status Register 
Bit 
Number 

Description 

BIT 0 Carrier Detect 
BIT 1 Ring Indicator 
BIT 2 Data Set Ready  
BIT 3 Clear To Send 
BIT 4 Delta Data Carrier Detect 
BIT 5 Trailing Edge Ring Indicator 
BIT 6 Delta Data Set Ready 
BIT 7 Delta Clear to Send 

Table 19: Modem Status Register 

15.5 Programming Interrupts 

The serial port has two associated IRQs, IRQ3 and IRQ4. To refer to these in a 
program we must refer to them by interrupt vector table entry: 0x0B for IRQ3 
and 0x0C for IRQ4. (IRQ0 is located at 0x08). There are two useful macros 
provided by Borland called enable() and disable(). These functions 
enable and disable all interrupts which is useful for when we are carrying out 
interrupt related programming and do not wish our program to be interrupted 
by other interrupt service requests. 
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Good programming practice dictates that we return the contents of the vector 
location when our program is finished. If we do not, programs which use the 
serial port may not run because they will be directed to our interrupt service 
routine. 

Programming interrupts on a PC is much like programming them on an 
embedded system. There is a definite series of steps one must use: 

!!!! Change the vector location 

First declare a pointer to an interrupt function: 
 
void interrupt far (*old_function)();  

Store the old vector address for our interrupt, because we must restore this 
when we are done. For example if we are using COM1, IRQ_location will 
be 0x0C. 

old_function = getvect(IRQ_location); 
Now we can place the location of our interrupt service routine in the vector 
table: 

setvect(IRQ_location, our_int_serv);  
If we were using COM1, IRQ_location is 0x0C and our_int_serv is 
the name of the function that we have written for interrupt service. 

Finally we reset the old vector to the table: 
setvect(IRQ_location, old_function); 

"""" Unmask the Interrupt 
The interrupt is unmasked by clearing the bit corresponding to our IRQ in 
location 0x021.  

//leave other bits alone and change our bit 
outportb(0x021, inportb(0x021 &  ~IRQ_location); 

%%%% Write an Interrupt Service Routine 
Now we can write our ISR. The routine can perform any action we wish. For 
example, the computer can log a time, log data, or emit a beep. The only 
condition is that we must tell the computer that the interrupt has been 
processed. This is easily done using the following call: 

outportb(0x20, 0x20);   
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//this tells the computer that the interrupt has been 
//processed 

A general format for ISR is as follows: 

1) Disable any further interrupts with disable(); 

2) Do what ever is required 

3) Indicate that the interrupt was processed to the PC 

4) Enable interrupts with enable(); 

5) Return the interrupt mask to its original configuration (set the bit 
corresponding to our interrupt). 

NOTE 
You may encounter problems attempting to perform some operations in an interrupt 
service routine. For instance if you try to write data to disk, the system may hang 
because the disk drive is trying to use an interrupt but is unable to do so. 

 

15.6 The Sample Project Code 

The following is a simple implementation of a serial port connection, the PC 
sends the message Hello Mr. PIC! and the PIC16C74 sends the message 
Hello Mr. PC!. On both the PIC16C74 and  the PC the string is stored in 
an array. The PIC16C74 will initiate the transfer. The PIC will take advantage of 
a portable device driver library. Both the PIC and the PC are configured to run 
at 9600 baud with 8 bits of data, no parity, and 1 stop bit. 

15.6.1 PIC16C74 Code 

#pragma option v; 
#define NOLONG 
 
//header files contain memory and port declarations,  
//and device library functions 
 
#include  "16c74.h" 
#include  "port.mpc" 
#include  "MPCsci2.h" 
 
const char cout[] = "Hello, Mr. PC!";  
char cin[15];            
 
void main(void){ 
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 SCI_array_get(cin); // The array to store the data 
     SCI_setup(0x019);  // Set up the SCI port on the PIC 
 SCI_string_int(cout); // Transmit a string using int. 
  
 while(1){ 
 } 
}  
 
void __INT(void){ 
 INTCON.GIE = 0; 
 if(PIR1.TXIF == 1){ 
   SCI_int_svcst();  // macro from the device library 
 } 
 RestoreContext; 
     return; 
}  

Example 127: Serial port connection example for the PIC16C74 

15.6.2 PC Code 
#include <dos.h> 
#include <stdio.h> 
#include <conio.h> 
#include <string.h> 
#define PORT1 0x03f8  //we want to use COM 1 
#define COM1 0x03f8 
#define IRQ 0x0C  //the INT for COM1 (IRQ3) 
 
unsigned char chout[] = "Hello Mr. PIC";  
unsigned char chin[15]; //store the received message here 
   
void interrupt far (*oldfunc)(...); // store the old ISR 
 
int gn; // this is a global counter, to tell us how many 
     //times the interrupt has been serviced 
int int_done = 0; 
   
// our interrupt service routine 
void interrupt int_svc(...){ 
 unsigned char c; 
 disable(); //turn off interrupts 
     // tell the PC that the interrupt has been serviced 
 
 outportb(0x20,0x20);   
    //if the first bit of the LSR is set, it means 
    //that the UART has received information 
 
 do { c = inportb(PORT1 + 5);  
      if (c & 1){   //so we get it! 
             chin[gn] = inportb(PORT1); 
              printf("%c", chin[gn]);  // print message  
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      } 
 }while (c == 1); 
     int_done = 1; 
 gn = gn + 1; 
     enable();  // turn back on the interrupts 
} 
 
int main(void){ 
     int n = 0; 
 outportb(PORT1 + 1 , 0); //Turn off COM1 interrupts 
 disable(); //Borland macro to turn off all interrupts 
 oldfunc = getvect(IRQ); //store old interrupt vector 
 setvect(IRQ, int_svc ); // Set new interrupt vector  
 
     //We must now configure the serial port, refer to the  

//charts at the beginning of the book to determine 
//what is being set. We will configure for 9600 baud, 
//8 bit words, 1 stop bit, and no parity bit. The  
//FIFO (if it exists) is set to one byte. 

 
     //Communication Settings          
 outportb(PORT1 + 3 , 0x80); // SET DLAB ON  
 outportb(PORT1 + 0 , 0x0C); // Set Baud rate Low Byte  
 outportb(PORT1 + 1 , 0x00); // Set Baud rate Hi Byte  
 outportb(PORT1 + 3, 0x00);  // The  DLAB is zero 
 
    // 8 Bits, No Parity, 1 Stop Bit 
 outportb(PORT1 + 3 , 0x03);  
 outportb(PORT1 + 2 , 0x07); // FIFO Control Register  
 outportb(PORT1 + 4 , 0x0B); // Turn on DTR, RTS, OUT2  
 
 // Interrupt when data received 
     outportb(PORT1 + 1 , 0x01);  
 
     // Set Programmable Interrupt Controller,  
     // i.e. unmask our interrupt 
     outportb(0x21,(inportb(0x21) & 0xEf));   
 
     enable(); //Borland macro to turn on interrupts 
 while(n<=15){ 
     outportb(PORT1, chout[n]); 
    while(int_done == 0) 
    {} 
       //output our message after receiving a byte 
    outportb(PORT1, chout[n]);  
    int_done = 0;   
    n=n+1; 
 } 
 disable(); 
     //set mask bit 
 outportb(0x21, (inportb(0x21) | 0x10));   
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 setvect(IRQ,oldfunc);  //restore interrupt setting 
 enable(); 
 printf("\nThe received string is \n %c\n" , chin); 
 return 0; 
} 

Example 128: Serial port connection example for the PC 

Now all that we require is the hardware necessary to turn the electrical signals 
from the PIC into RS-232 levels. This is quite easy and there are a number of 
chips that can turn 5 volt TTL levels into RS-232 levels off of a standard 5 volt 
power supply. They use a “bucket brigade” of capacitors to build the needed 
potential difference. This project uses a MAX232A, but you can use any of the 
many alternatives as long as you follow the schematic: 

U1

MAX232A

1
3
4
5

16

15

2
6

12
9

11
10

13
8

14
7

C1+
C1-
C2+
C2-

VCC

GNDV+
V-

R1OUT
R2OUT

T1IN
T2IN

R1IN
R2IN

T1OUT
T2OUT

C5

0.1

C2

0.1

VCC
R1
10

P1 CONNECTOR DB9

5 9 4 8 3 7 2 6 1

C3

0.1

TX - to MCU

C1

0.1

RX - to MCU

C4
0.1

 
Figure 11: Project schematic 

It is useful to examine the pin outs of the RS232 port: 
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CONNECTOR PIN # NAME 

DB9 DB25  
3 2 TD -Transmit Data 
2 3 RD - Receive Data 
5 7 SG - Signal Ground 
4 20 DTR - Data Terminal Ready 
6 6 DSR - Data Set Ready 
1 8 CD -  Carrier Detect 
7 4 RTS  - Request to Send 
8 5 CTS - Clear to Send 

Table 20: Pin outs on the RS232 port 

There are two types of serial connectors: the DB9 has 9 pins and the DB25 has 
25 pins. The pins are usually marked on the connector so it is easily determined 
which pins are which. The interface to the microcontroller can be thought of as 
a DCE, or Data Communications Equipment, and therefore needs only a 
straight through cable.  

The RS-232 protocol defines two types of devices, DTE, Data Terminal 
Equipment and DCE, Data Communication Equipment. DTE is generally used 
with PCs and DCE is usually found on modems. The pins, DTR, DSR, CD, 
RTS, and CTS are only useful with a modem, i.e. connecting a DTE to a DCE. 
We will just loop these pins back and trick the PC into thinking it is talking to a 
modem. This way data can flow freely on the TX and RX pins.  

NOTE  
Ensure that you connect the ground on both parts of the circuit together or it will not 
work because the electrical signals will not be able to complete a circuit. 

 

You can make many interesting and fun projects using the serial port. The 
project described in this section can be very useful even if you do not have any 
micro controllers to interface with. It is very useful for learning key embedded 
programming concepts like interrupts, registers, serial communications, and 
timing. You can easily hook up two PCs to transfer files and run dumb 
terminals. If you connect two PC’s together remember, that you are connecting 
two DTEs, which will require a null modem cable.
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16. C Precedence Rules 
Expression type Operators 

Primary Identifier   
 Constant   
 String   
 Expression   
Postfix a[b] f() a.b 
 a-- a++  
Unary ++a --a  
 sizeof a sizeof(a)  
 &a *a ~a 
 !a +a -a 
Cast (type) a   
Multiplicative a * b a / b a % b 
Additive a + b a - b  
Shift a << b a >> b  
Relational a < b a > b  
 a <= b a >= b  
Equality a == b a != b  
Bit AND a&b   
Bit EOR a ^ b   
Bit OR a | b   
Logical AND a && b   
Logical OR a || b   
Conditional a ? b : c   
Assignment a = b   
 a += b a -= b  
 a *= b a /= b a %= b 
 a &= b a ^= b a |= b 
 a <<= b a >>= b  
Comma a,b   

Table 21: Rules of operator precedence 

Operations higher up in the table have precedence over those lower. Those at 
the same level execute in the order they appear. The optimizer often regroups 
sub-expressions that are both associative and commutative in order to improve 
the efficiency of generated code. The order of any side-effects, such as 
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assignment, or action taken by a function call, is also subject to alteration by the 
compiler. 
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17. ASCII Chart 
HEX ASCII HEX ASCII HEX  ASCII HEX ASCII 

00 NUL 20 SP 40 @ 60 ` 
01 SOH 21 ! 41 A 61 a 
02 STX 22 “ 42 B 62 b 
03 ETX 23 # 43 C 63 c 
04 EOT 24 $ 44 D 64 d 
05 ENQ 25 % 45 E 65 e 
06 ACK 26 & 46 F 66 f 
07 BEL 27 ‘ 47 G 67 g 
08 BS 28 ( 48 H 68 h 
09 HT 29 ) 49 I 69 i 
0A LF 2A * 4A J 6A j 
0B VT 2B + 4B K 6B k 
0C FF 2C , 4C L 6C l 
0D CR 2D - 4D M 6D m 
0E SO 2E . 4E N 6E n 
0F SI 2F / 4F O 6F o 
10 DLE 30 0 50 P 70 p 
11 DC1 31 1 51 Q 71 q 
12 DC2 32 2 52 R 72 r 
13 DC3 33 3 53 S 73 s 
14 DC4 34 4 54 T 74 t 
15 NAK 35 5 55 U 75 u 
16 SYN 36 6 56 V 76 v 
17 ETB 37 7 57 W 77 w 
18 CAN 38 8 58 X 78 x 
19 EM 39 9 59 Y 79 y 
1A SUB 3A : 5A Z 7A z 
1B ESC 3B ; 5B [ 7B { 
1C FS 3C < 5C \ 7C | 
1D GS 3D = 5D ] 7D } 
1E RS 3E > 5E ^ 7E ~ 
1F US 3F ? 5F _ 7F DEL 

Table 22: ASCII characters
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18. Glossary 
accumulator 

Also AC, ACC. A register which holds the resulting values of ALU operations. 

a/d 
Analog to digital.  

address 
A number which indicates the storage location of data in memory. 

addressing mode 
The syntax used to describe a memory location to the CPU. 

algorithm 
A solution to a problem. 

ALU 
Arithmetic Logic Unit. Performs basic mathematical manipulations such as add, subtract, 
complement, negate, AND, OR. 

analog 
A continuous range of voltage values. 

AND 
Logical operation where the result is 1 iff ANDed terms both have the value 1. 

ANSI C 
American National Standards Institute standards for C language. 

array 
A group of data elements indexed and stored in contiguous memory. 

ASCII 
The American Standard Code for Information Interchange is used to represent characters. 

assembler 
Program that converts a machine’s assembly language into object code. 

assembly language  
Mnemonic form of a specific machine language. 

assignment 
Store a value in a variable. 
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asynchronous 
Unclocked or not synchronous with CPU timing. 

bank 
A logical unit of memory (64k). 

baud 
The number of bits transmitted per second 

binary 
Base 2 number system which contains only the numbers 0 and 1. 

bit 
Binary digit which is either 0 or 1. 

bit field 
A group of contiguous bits considered as a unit.  

block 
Any section of C code enclosed by braces {}. 

breakpoint 
A set location to stop executing program code. Breakpoints are used in debugging 
programs. 

bus 
Path for signals between components of a computer system . 

byte 
Eight bits. 

C 
High level programming language. 

cast 
Also Coerce. Convert a variable from one type to another. 

checksum 
A value which is the result of adding specific binary values. A checksum is often used to 
verify the integrity of a sequence of binary numbers. 

clear 
Set a bit to 0. 

clock 
Fixed-frequency signal that triggers or synchronizes CPU operation and events. A clock has 
a frequency which describes its rate of oscillation in MHz. 
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comment 
Non-executed text included in a program in order to explain what the executable 
statements in the program are doing. 

compiler 
Program that converts a high level language to object code. 

computer operating properly (COP) 

control statement 
Statement which controls the execution of other statements based on conditions provided 
by the programmer. 

CPU 
Central Processing Unit. It fetches, decodes and executes instructions. 

cross assembler 
An assembler that runs on one type of computer and assembles the source code for a 
different target computer. For example, an assembler that runs on a 80486 and generates 
object code for Motorola’s 68HC05. 

cross compiler 
A compiler that runs on one type of computer and compiles source code for a different 
target computer. For example, a compiler that runs on a 80486 and generates object code 
for Motorola’s 68HC05. 

crystal 
A quartz crystal which provides a frequency for clock timing. 

debugger 
A program which helps with system debugging where program errors are found and 
repaired. Debuggers support such features as breakpoints, dumping, memory modify. 

decision statement 
Statement which controls the program flow based on the result of testing a condition. 

declaration 
A specification of the type, name and possibly the value of a variable. 

decoder 
The unit which decodes bits into mutually exclusive outputs. 

dereference 
Also *. Access the value pointed to by a pointer. 

directive 
A command given to the preprocessor which begins with a #. 
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EEPROM 
Electrically erasable programmable read only memory. 

embedded 
Fixed within a surrounding system or unit. 

escape character 
The / character in C can be used as an escape character. 

executable 
A file which contains code which can be run on a specific target device. 

fixed point 
Integer representation where the decimal is in a fixed position. 

floating point 
The integer representation of decimal numbers using a mantissa field and an exponent field. 

global variable 
Variable that can be read or modified by any part of a program. 

header file 
Source code which is inserted into another source file using the #include preprocessor 
directive. 

hexadecimal 
Also Hex. Base 16 numbering system which uses the digits 0-9 and the letters A-F. 

include file 
A file which is included by the preprocessor due to the use of the #include directive. 

index register 
Also X. Register used to hold an increment which can be added to an address when indirect 
addressing is used. 

integer 
A number with no decimal, a whole number. 

interrupt 
A signal sent to the CPU to request service. The CPU saves its state and branches to a 
routine to handle the interrupt. After the interrupt has been handled the saved state is 
restored. 

library 
Collection of functions which are available for use by other programs. 
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linker 
A program which combines separate object files together in order to create an executable 
file. 

local variable 
Variable that can only be used by a specific module or modules in a program. 

logical operator 
Operators which perform logical operations on their operands. For example, !, &&, ||. 

machine language 
Binary code instructions which can be understood by a specific CPU. 

macro 
Source code which is given a unique label. If the compiler sees the label in following source 
code it will replace it with the body of the macro.  

mask 
A group of bits designed to set or clear specific locations in another grout of bits when 
used with a logical operator. 

maskable interrupt 
Interrupts which software can activate and deactivate. 

memory mapped 
A virtual address or device is associated with an actual address in memory. 

microcontroller 
Also MCU. Single chip which controls another device and contains a CPU, memory and 
I/O ability. A type of embedded controller. 

microprocessor 
Also µP. A single chip CPU. 

module 
A logically united part of a program which is in the same source code file. 

nibble 
A four bit binary number. 

NOP 
No operation. An instruction which is used to create a delay.  

not 
Logical negation. A 0 becomes a 1 and a 1 becomes a 0. 
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object code 
Machine language instructions represented by binary numbers not in executable form. 
Object files are linked together to produce executable files. 

octal 
Base 8 number system. 

operator 
A symbol which represents an operation to be performed on operands. For example, +, *, 
/. 

or 
A Boolean operation which yields 1 if any of its operands is a 1. 

paging 
A page is a logical block of memory. A paged memory system uses a page address and a 
displacement address to refer to a specific memory location. 

parameter 
A variable used to pass information to and from a function. 

pointer 
An address of a specific object in memory which is used to refer to that object. 

port 
A physical I/O connection. 

preprocessor 
A program which prepares data for processing by the compiler. 

program 
Collection of instructions for a computer written in a programming language which 
implement an algorithm. 

program counter 
Also PC. A register which holds the address of the next instruction to be executed. The 
program counter is incremented after each instruction is fetched. 

PROM 
Programmable read-only memory. ROM that can be programmed. 

RAM 
Random Access Memory. RAM is read/write memory. 

real number 
A number which can have a decimal place. 
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real time 
A system which reacts at a speed commensurate with the time an actual event occurs. 

recursive 
A function which calls itself. 

register 
A byte or word of memory which can be directly accessed by the processor. Registers are 
accessed more quickly than other memory locations. Some registers are CPU registers 
which means that they exist within the CPU.   

reset 
To return to a selected beginning point. 

return 
An instruction which terminates a function. 

ROM 
Read Only Memory.  

ROMable 
Code which will execute when placed in ROM memory. 

scope 
A variable’s scope is the areas of a program in which it can be accessed. 

sequencer 
A module which provides the next program address to memory. 

serial 
Sequential transmission of one bit at a time using a single line. 

set 
Give a bit the value 1. 

shift 
Move the contents of a register to the left or right. 

side-effect 
An unintentional change to a variable. 

simulator 
A program which has the same input and output behaviour as a specific device. Timing 
considerations can not be tested with a simulator. 

source code 
A program in assembly language or a high level language before it passes through an 
assembler or compiler. 
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stack 
A section of RAM which is used to store temporary data. A stack is a last-in-first-out 
(LIFO) structure which contains information which is saved and restored.  

stack pointer 
A register which contains the address of the top of the stack. 

static 
A variable that is stored in a reserved area of RAM instead of in the stack. The area 
reserved cannot be used by other variables. 

synchronous 
Operations which are controlled by a clock pulse. 

timer 

UART 
Universal asynchronous receiver/transmitter. A serial-to-parallel and parallel-to-serial 
converter. 

USART 
Universal Synchronous/Asynchronous Receiver/Transmitter. A chip which handles 
synchronous data communications. 

variable 
A symbolically named address or range of addresses which can be assigned values. 

void 
A C data type.  

word 
A 16 bit binary number. 
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20. Index 

! 

! · See not operator 
!= · See inequality operator 

# 

#define · 57 
#include · 57 
#pragma · 58 

& 

& operator 
precedence · 185 

&& · See and operator 

* 

* operator 
precedence · 185 

{ 

{ · See braces 

< 

< · See less-than operator 
<= · See less-than-or-equal 

= 

= · See assignment operator 
== · See equality operator 

> 

> · See greater-than operator 
>= · See greater-than-or-equal 

A 

accumulator · 14 
algorithm · 83 
ALU · 13 
and operator · 93 
arithmetic logic unit · See ALU 
arithmetic operators · 88 
ASCII · 71, 76 
assembler · 47 
assembly language · 46 
assignment operator · 87 
assignment statement · 60 
asynchronous · 16 

B 

baud rate · 16 
binary · 44 
binary notation · 79 
binary operators · 85 
bits · 45 
block · 69 
braces · 59, 69, 70, 102 
bus · 6, 19 
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C 

central processing unit · See CPU 
character · 71 
character data type · 76 

assigning · 76 
clock · 11 
collating sequence · 77 
comma operator · 87 
comments · 56 

C++ · 56 
compiler · 49, 50, 66, 69 

cross compiler · 51 
constant · 67 

defining with #define · 57 
control statement · 60 
control structure · 99 
CPU · 6, 19 
cross compiler · See compiler 

D 

data abstraction · 75, 113 
data type · 71 

character · 76 
double · See double data type 
float · 81 
function · 75 
integer · See integer data type 
long · See long data type 
long double · See long double data type 
modifiers · See modifiers 
parameter · 76 
short · See short data type 

dead code · 94 
decimal notation · 79 
decoder · 13 
decrement 

operator · 89 
postfix · 89 
prefix · 90 

development platform · 5 
directives · See preprocessor directives 
division 
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preprocessor directives · 56, 65 
processor clock · See clock 
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COP8C C6805 C6808 SXC Z8C C38 MPC

Code Development Systems
Byte Craft Limited specializes in embedded systems software development tools for single-chip microcontrollers. Byte 
Craft Limited was the first company to develop a C compiler for the Motorola 68HC05 and the National Semiconductor 
COP8™. Our compilers and related development tools are now being used by a wide range of design engineers and 
manufacturers in areas of Commerce, Industry, Education, and Government.

! Supports all Microchip PIC 12x/14x/16x/17x 
families, 8K and Flash parts

! Named address space supports variable grouping
! Works with Microchip's PICMASTER, ICE 2000 emulator, 

MPLAB-SIM simulator, Advanced Transdata, Tech-Tools 
Mathias, Clearview, iSystem

! Supports setting configuration fuses through C
! Demo at www.bytecraft.com/impc.html

CATALOG

! Supports the Feature Family, and SGR/SGE
! Supports LOCAL memory reuse, SPECIAL memory 

through software
! Supports SREG memory management
! Support for symbolic debugging with emulators 

including MetaLink
! Supports setting configuration fuses through C
! Demo at www.bytecraft.com/icop.html

! Supports all 68HC05 variants
! Supports LOCAL memory reuse, SPECIAL memory 

through software
! Support for symbolic debugging with many emulators 

including MMDS05, MMEVS, and Metalink iceMASTER
! E6805 available to support Motorola 
! Supports setting Mask Option Register through C
! Demo at www.bytecraft.com/i05.html

EVM, EVS

! Supports all MELPS740 variants, including 7600 series, 
M509xx, M371xx, M374xx and M38xxx

! Supports MUL, 7600
! Supports processor-specific instructions BRK, CLC, CLD, 

CLI, CLT, CLV, NOP, PHA, PLA, PLP, ROL, ROR, RRF, SEC, 
SED, SEI, SET, STP, WIT

! Allows direct access to AC, X, Y, CC registers
! Demo at www.bytecraft.com/ic38.html

! Supports all 68HC08 variants
! Supports LOCAL memory reuse, SPECIAL memory 

through software
! Supports 6808 extended addressing, instructions
! Support for symbolic debugging with many emulators 

including Motorola MMDS08 and MMEVS08, and the 
Ashling CT68HC08

! Supports setting Mask Option Register through C
! Demo at www.bytecraft.com/i08.html

! Supports all SX variants, including SX48 and SX52
! Supports LOCAL memory reuse, SPECIAL memory 

through software
! Supports virtual device drivers within C
! Data types include bit, bits, char, short, int, 

int8/16/24/32, long, float and fixed point
! Support for assembly source-level debugging with 

Parallax SX-Key
! Demo at www.bytecraft.com/isxc.html

! Supports all Zilog Z8 and Z8+ variants
! Supports instruction set variants C94, C95, HALT, MUL, 

STOP, WAIT
! Supports processor-specific instructions DI, EI, HALT, 

NOP, RCF, SCF, STOP, WAIT, WDT, WDH
! Generates information required for source-level 

debugging
! Demo at www.bytecraft.com/iz8c.html

Features
Both DOS and Windows versions include an Integrated 
Development Environment. The DOS IDE provides 
source-level error reporting. The Windows IDE maintains 
projects, gives access to online help, and can control third-
party tools.

The compilers generate tight, fast, and efficient 
executables, as well as listing files that match the original C 
source to the code generated. Several optional reports 
(symbol information, nesting level, register contents) can 
appear in the listing file.

Header files describe each processor derivative. 
#pragma statements configure the compiler for available 
interrupts, memory resources, ports, and configuration 
registers. Convenient #defines make your programs 
portable between members of a processor family.

C extensions include: bit and bits data types, binary 
constants, case statement extensions, direct register access 
in C, embedded assembly, initialization control, direct 
variable placement, interrupt support in C.

Two forms of linking are available: Absolute Code Mode 
links library modules into the executable during 
compilation. The BClink linker uses a more traditional 
linker command file and object files. Either route provides 
optimization at final code generation.

You can include Macro Assembler instructions within C 
code, or as separate source files. Embedded assembly code 
can call C functions and access C variables directly. You 
can also pass arguments to and from assembly code.

Availability
Byte Craft Limited products are available world-wide, both 
directly from Byte Craft Limited and through our 
distributors. 

For more information, see www.bytecraft.com.

Upgrade Policy
Registered customers receive free upgrades and 
technical support for the first year. All other registered 
users may purchase major releases for a fraction of the 
full cost. Along with our version upgrades, Byte Craft 
Limited remains committed to maintaining a high level of 
technical support.

 

Demonstration versions of the Code 
Development System are available.

Byte Craft Limited
A2-490 Dutton Drive
Waterloo, Ontario
Canada • N2L 6H7

 519-888-6911
 519-746-6751

phone:
fax:

!

! Accepts fuzzy logic rules, membership functions and 
consequence functions

! Standard defuzzification methods provided; add new 
defuzzification methods easily

! Includes plots of membership and consequence 
functions in generated comments

! Works with all Code Development Systems

Transforms fuzzy logic to plain C; call between C and 
fuzzy functions
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About Byte Craft Limited

Byte Craft Limited is a software 
development company specializing in 
embedded systems software 
development tools for single-chip 
microcomputers. We provide 
innovative solutions for developers, 
consultants and manufacturers around 
the world. Our main products are C 
cross-compilers targeted to a variety of 
microcontroller families.
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Byte Craft Limited
A2-490 Dutton Drive
Waterloo, Ontario, Canada
N2L 6H7
phone: +1 519.888.6911
fax : +1 519.746.6751
<info@bytecraft.com>
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