IR Sensor

Last updated 3/26/18

- Obstacle detection
 - Want to know if there is something in front of a sensor
 - Two primary non-contact choices
 - Ultrasonic sound
 - Optical light
 - This lab uses optical

- Obstacle detection
 - To somewhat limit interference from other sources choose Infrared light (IR)
 - Commonly used in remote controls for TV, audio, ...
 - Line of sight technology
 - Requires an IR transmitter and receiver

- Obstacle detection
 - IR transmitter
 - LED which emits in the IR light region
 - Wavelength = 940nm
 - Broad transmit angle limit this with case and slit window
 - More current more light
 - Angle dependent

4

- Obstacle detection
 - IR receiver

- Detects IR light
- Uses signal processing to limit the 'recognized' signal
- Our detector recognizes 38Kz square waves (carrier frequency)

5

- Obstacle detection
 - IR receiver
 - Sensitive to angle
 - Light intensity (LED drive)
 - Carrier frequency

Fig. 5 - Frequency Dependence of Responsivity

- Obstacle detection
 - IR receiver
 - Can use carrier frequency modification to change the relative sensitivity
 - Use this to detect relative distance
 - if detected at 35KHz or 41Khz must be close
 - If only detected at 38KHz must be far

Fig. 5 - Frequency Dependence of Responsivity

- IR receiver
 - Works best if you filter VCC

Vout

VCC

GND

- Obstacle detection
 - Required LED output waveform

- Obstacle detection
 - Notes
 - Too much light can saturate the detector and stop it from working
 - Very sensitive to reflections carefully adjust angles to avoid reflection from the board or tabletop
 - Align the sensor behind the transmitter to maximize the effectiveness of the shield
 - Think about using 2 timers to control the LED output