
Pin Debounce

Last updated – 2/14/20

2 © tjCommon

Debounce

• When a button is pressed (or released) it often
bounces
• This causes the pin associated with the button to oscillate

between 0 and 1

src: The Ganssle Group

3 © tjCommon

Debounce

• There are hardware and software solutions

• This problem is very complex

• Hardware solutions can be made very robust – but may
not be practical (or available) on our board

• Software solutions are not 100% effective

• We want to asynchronously check a pin
• Any solution we choose has some failure mechanism

• Note: typically the bouncing is resolved in less than a milli-
second

4 © tjCommon

Debounce

• Simple software based debounce solution
• We want to asynchronously check a pin

• Any solution we choose has some failure mechanism

• Typically the bouncing is resolved in less than a milli-
second

• We can check the pin, wait a few milli-seconds and check
again
• If the pin is different we may be bouncing – do not update the value

• If the pin is the same we know we are not bouncing – “valid”

• Keep track of the current pin value
• Update the value only if the new “valid” pin value is different than

the old “current” pin value

5 © tjCommon

Debounce

• get pin value - debounced

void check_pin(uint8_t * pin_val_ptr, const volatile uint8_t* pin_reg, uint8_t pin_mask){
// Check the input two times separated by 5ms to debounce a pin
// pin_val_ptr - pointer to the value of the pin
// pin_reg - pointer to pin register, pin_mask - mask for the desired pin
// ex: check p6.6 and store in variable my_pin_val
// check_pin(&my_pin_val, &P6->IN, 0x40)

// *** assumes default frequency of ~3MHz ***

Example: check pin P6.2 and store the value in my_pin_val
check_pin(&my_pin_val, &P6->IN, 0x04);

Output:
updated pin value via pointer

Input:
Pointer to pin register

Input:
Mask for pin bit

6 © tjCommon

Debounce

• get pin value - debounced
void check_pin(uint8_t * pin_val_ptr, const volatile uint8_t* pin_reg, uint8_t pin_mask){

// Check the input two times separated by 5ms to debounce a pin
// pin_val_ptr - pointer to the value of the pin
// pin_reg - pointer to pin register, pin_mask - mask for the desired pin
// ex: check p6.6 and store in variable my_pin_val
// check_pin(&my_pin_val, &P6->IN, 0x40)

// *** assumes default frequency of ~3MHz ***

// temporary variables
uint8_t pin_val_a;
uint8_t pin_val_b;

// first check
pin_val_a = *pin_reg & pin_mask; // get input pin value

// delay for debouncing (5ms)
__delay_cycles(5*(3000000/1000)); // change this for different clock frequencies

// second check
pin_val_b = *pin_reg & pin_mask; // get input pin value

// test for changes
if (pin_val_a == pin_val_b){

*pin_val_ptr = pin_val_a && 1; // save new pin value
}
else{

; // keep current pin value
} // end if

return;
} // end check_pin

7 © tjCommon

Debounce

• check_pin() limitation

• It is possible that the pin could be changed (and start
bouncing) during the 5ms waiting period

AND

• The second check catches the bounce in the original
position – leading to a decision of a stable pin and missing
the change

• Solution – add a second delay and a third check and
require all three checks to match before updating the pin
value – not necessary for our purposes

