
14 Design Debugging with the Signal Tap Logic Analyzer

14.1 About the Signal Tap Logic Analyzer

The Signal Tap Logic Analyzer is a next-generation, system-level debugging tool that
captures and displays real-time signal behavior in an FPGA design. You can examine
the behavior of internal signals without using extra I/O pins, while the design is
running at full speed on an FPGA.

The Signal Tap Logic Analyzer is scalable, easy to use, and available as a stand-alone
package or with a software subscription.

The Signal Tap Logic Analyzer supports these features:

• Debug an FPGA design by probing the state of internal signals without the need of
external equipment.

• Define custom trigger-condition logic for greater accuracy and improved ability to
isolate problems.

• Capture the state of internal nodes or I/O pins in the design without the need of
design file changes.

• Store all captured signal data in device memory until you are ready to read and
analyze it.

The Signal Tap Logic Analyzer supports the highest number of channels, largest
sample depth, and fastest clock speeds of any logic analyzer in the programmable
logic market.

QPS5V3 | 2017.11.06

Intel Corporation. All rights reserved. Intel, the Intel logo, Altera, Arria, Cyclone, Enpirion, MAX, Nios, Quartus
and Stratix words and logos are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or other
countries. Intel warrants performance of its FPGA and semiconductor products to current specifications in
accordance with Intel's standard warranty, but reserves the right to make changes to any products and services
at any time without notice. Intel assumes no responsibility or liability arising out of the application or use of any
information, product, or service described herein except as expressly agreed to in writing by Intel. Intel
customers are advised to obtain the latest version of device specifications before relying on any published
information and before placing orders for products or services.
*Other names and brands may be claimed as the property of others.

ISO
9001:2008
Registered

http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html

Figure 161. Signal Tap Logic Analyzer Block Diagram

Design Logic

1 2 30

1 2 30

Signal Tap
Instances

Intel FPGA
Programming

Hardware

Quartus Prime
Software

Buffers (Device Memory)

FPGA Device

JTAG
Hub

Note to figure:

1. This diagram assumes that you compiled the Signal Tap Logic Analyzer with the
design as a separate design partition using the Intel Quartus Prime incremental
compilation feature. If you do not use incremental compilation, the Compiler
integrates the Signal Tap logic with the design.

This chapter is intended for any designer who wants to debug an FPGA design during
normal device operation without the need for external lab equipment. Because the
Signal Tap Logic Analyzer is similar to traditional external logic analyzers, familiarity
with external logic analyzer operations is helpful, but not necessary. To take
advantage of faster compile times when making changes to the Signal Tap Logic
Analyzer, knowledge of the Intel Quartus Prime incremental compilation feature is
helpful.

14.1.1 Hardware and Software Requirements

You need the following hardware and software to perform logic analysis with the
Signal Tap Logic Analyzer:

• Signal Tap Logic Analyzer software

• Download/upload cable

• Intel development kit or your design board with JTAG connection to device under
test

You can use the Signal Tap Logic Analyzer that is included with the following software:

• Intel Quartus Prime design software

• Intel Quartus Prime Lite Edition

Alternatively, use the Signal Tap Logic Analyzer standalone software and standalone
Programmer software.

Note: The Intel Quartus Prime Lite Edition software does not support incremental
compilation integration with the Signal Tap Logic Analyzer.

14 Design Debugging with the Signal Tap Logic Analyzer

QPS5V3 | 2017.11.06

Intel® Quartus® Prime Standard Edition Handbook Volume 3 Verification
328

The memory blocks of the device store captured data. The memory blocks transfer the
data to the Intel Quartus Prime software waveform display over a JTAG
communication cable, such as or Intel FPGA Download Cable.

Table 109. Signal Tap Logic Analyzer Features and Benefits

Feature Benefit

Quick access toolbar Provides single-click operation of commonly-used menu items. You
can hover over the icons to see tool tips.

Multiple logic analyzers in a single device Allows you to capture data from multiple clock domains in a design at
the same time.

Multiple logic analyzers in multiple devices in a
single JTAG chain

Allows you to capture data simultaneously from multiple devices in a
JTAG chain.

Nios II plug-in support Allows you to specify nodes, triggers, and signal mnemonics for IP,
such as the Nios II processor.

Up to 10 basic, comparison, or advanced trigger
conditions for each analyzer instance

Allows you to send complex data capture commands to the logic
analyzer, providing greater accuracy and problem isolation.

Power-up trigger Captures signal data for triggers that occur after device programming,
but before manually starting the logic analyzer.

Custom trigger HDL object You can code your own trigger in Verilog HDL or VHDL and tap specific
instances of modules located anywhere in the hierarchy of your
design, without needing to manually route all the necessary
connections. This simplifies the process of tapping nodes spread out
across your design.

State-based triggering flow Enables you to organize your triggering conditions to precisely define
what your logic analyzer captures.

Incremental compilation Allows you to modify the signals and triggers that the Signal Tap Logic
Analyzer monitors without performing a full compilation, saving time.

Incremental route with rapid recompile Allows you to manually allocate trigger input, data input, storage
qualifier input, and node count, and perform a full compilation to
include the Signal Tap Logic Analyzer in your design. Then, you can
selectively connect, disconnect, and swap to different nodes in your
design. Use Rapid Recompile to perform incremental routing and gain
a 2-4x speedup over the initial full compilation.

Flexible buffer acquisition modes The buffer acquisition control allows you to precisely control the data
that is written into the acquisition buffer. Both segmented buffers and
non-segmented buffers with storage qualification allow you to discard
data samples that are not relevant to the debugging of your design.

MATLAB integration with included MEX function Collects the data the Signal Tap Logic Analyzer captures into a
MATLAB integer matrix.

Up to 2,048 channels per logic analyzer instance Samples many signals and wide bus structures.

Up to 128K samples per instance Captures a large sample set for each channel.

Fast clock frequencies Synchronous sampling of data nodes using the same clock tree driving
the logic under test.

Resource usage estimator Provides an estimate of logic and memory device resources that the
Signal Tap Logic Analyzer configurations use.

continued...

14 Design Debugging with the Signal Tap Logic Analyzer

QPS5V3 | 2017.11.06

Intel® Quartus® Prime Standard Edition Handbook Volume 3 Verification
329

Feature Benefit

No additional cost Intel Quartus Prime subscription and the Intel Quartus Prime Lite
Edition include the Signal Tap Logic Analyzer.

Compatibility with other on-chip debugging
utilities

You can use the Signal Tap Logic Analyzer in tandem with any JTAG-
based on-chip debugging tool, such as an In-System Memory Content
editor, allowing you to change signal values in real-time while you are
running an analysis with the Signal Tap Logic Analyzer.

Floating-Point Display Format To enable, click Edit ➤ Bus Display Format ➤ Floating-point
Supports:
• Single-precision floating-point format IEEE754 Single (32-bit).
• Double-precision floating-point format IEEE754 Double (64-bit).

Related Links

System Debugging Tools Overview on page 183

14.1.2 Open Standalone Signal Tap Logic Analyzer GUI

To open a new Signal Tap through the command-line, type:

quartus_stpw <stp_file.stp>

14.1.3 Backward Compatibility with Previous Versions of Intel Quartus
Prime Software

When you open an .stp file created in a previous version of Intel Quartus Prime
software in a newer version of the software, the .stp file cannot be opened in a
previous version of the Intel Quartus Prime software.

If you have a Intel Quartus Prime project file from a previous version of the software,
you may have to update the .stp configuration file to recompile the project. You can
update the configuration file by opening the Signal Tap Logic Analyzer. If you need to
update your configuration, a prompt appears asking if you want to update the .stp to
match the current version of the Intel Quartus Prime software.

14.2 Signal Tap Logic Analyzer Task Flow Overview

To use the Signal Tap Logic Analyzer to debug your design, you perform a number of
tasks to add, configure, and run the logic analyzer.

14 Design Debugging with the Signal Tap Logic Analyzer

QPS5V3 | 2017.11.06

Intel® Quartus® Prime Standard Edition Handbook Volume 3 Verification
330

Figure 162. Signal Tap Logic Analyzer Task Flow

End

Yes

NoFunctionality
Satisfied or Bug

Fixed?

Add Signal Tap Logic
Analyzer to Design Instance

Configure
Signal Tap Logic Analyzer

Program Target
Device or Devices

View, Analyze, and
Use Captured Data

Define Triggers

Run Signal Tap
Logic Analyzer

Adjust Options,
Triggers, or Both

Continue Debugging

Recompilation
Necessary?

Yes

Create New Project or
Open Existing Project

NoCompile Design

No

14.2.1 Add the Signal Tap Logic Analyzer to Your Design

Create an .stp or create a parameterized HDL instance representation of the logic
analyzer using the IP Catalog and parameter editor. If you want to monitor multiple
clock domains simultaneously, add additional instances of the logic analyzer to your
design, limited only by the available resources in your device.

14.2.2 Configure the Signal Tap Logic Analyzer

After you add the Signal Tap Logic Analyzer to your design, configure the logic
analyzer to monitor the signals you want.

You can add signals manually or use a plug-in, such as the Nios II processor plug-in,
to add entire sets of associated signals for a particular IP.

Specify settings for the data capture buffer, such as its size, the method in which the
Signal Tap Logic Analyzer captures and stores the data. If your device supports
memory type selection, you can specify the memory type to use for the buffer.

14 Design Debugging with the Signal Tap Logic Analyzer

QPS5V3 | 2017.11.06

Intel® Quartus® Prime Standard Edition Handbook Volume 3 Verification
331

Related Links

Configuring the Signal Tap Logic Analyzer on page 333

14.2.3 Define Trigger Conditions

To capture and store specific signal data, set up triggers that tell the logic analyzer
under what conditions to stop capturing data. The Signal Tap Logic Analyzer captures
data continuously while the logic analyzer is running.

The Signal Tap Logic Analyzer allows you to define trigger conditions that range from
very simple, such as the rising edge of a single signal, to very complex, involving
groups of signals, extra logic, and multiple conditions. Power-Up Triggers allow you to
capture data from trigger events occurring immediately after the device enters user-
mode after configuration.

Related Links

Defining Triggers on page 352

14.2.4 Compile the Design

Once you configure the .stp file and define trigger conditions, compile your project
including the logic analyzer in your design.

Note: Because you may need to change monitored signal nodes or adjust trigger settings
frequently during debugging, Intel FPGA recommends that you use the incremental
compilation feature built into the Signal Tap Logic Analyzer, along with Intel Quartus
Prime incremental compilation, to reduce recompile times. You can also use
Incremental Route with Rapid Recompile to reduce recompile times.

Related Links

Compiling the Design on page 376

14.2.5 Program the Target Device or Devices

When you debug a design with the Signal Tap Logic Analyzer, you can program a
target device directly from the .stp without using the Intel Quartus Prime
Programmer. You can also program multiple devices with different designs and
simultaneously debug them.

Related Links

• Program the Target Device or Devices on page 381

• Manage Multiple Signal Tap Files and Configurations on page 350

14.2.6 Run the Signal Tap Logic Analyzer

In normal device operation, you control the logic analyzer through the JTAG
connection, specifying when to start looking for trigger conditions to begin capturing
data. With Runtime or Power-Up Triggers, read and transfer the captured data from
the on-chip buffer to the .stp for analysis.

Related Links

Running the Signal Tap Logic Analyzer on page 382

14 Design Debugging with the Signal Tap Logic Analyzer

QPS5V3 | 2017.11.06

Intel® Quartus® Prime Standard Edition Handbook Volume 3 Verification
332

14.2.7 View, Analyze, and Use Captured Data

The data you capture and read into the .stp file is available for analysis and
debugging. You can save the data for later analysis, or convert the data to other
formats for sharing and further study.

• To simplify reading and interpreting the signal data you capture, set up mnemonic
tables, either manually or with a plug-in.

• To speed up debugging, use the Locate feature in the Signal Tap node list to
find the locations of problem nodes in other tools in the Intel Quartus Prime
software.

Related Links

View, Analyze, and Use Captured Data on page 386

14.3 Configuring the Signal Tap Logic Analyzer

You can configure instances of the Signal Tap Logic Analyzer in the Signal
Configuration pane of the Signal Tap Logic Analyzer window. Some settings are
similar to those found on traditional external logic analyzers. Other settings are unique
to the Signal Tap Logic Analyzer.

Figure 163. Signal Tap Logic Analyzer Signal Configuration Pane

Signal Configuration Pane

Note: You can adjust fewer settings with run-time trigger conditions than with power-up
trigger conditions.

14.3.1 Assigning an Acquisition Clock

To control how the Signal Tap Logic Analyzer acquires data you must assign a clock
signal. The logic analyzer samples data on every positive (rising) edge of the
acquisition clock. The logic analyzer does not support sampling on the negative
(falling) edge of the acquisition clock.

You can use any signal in your design as the acquisition clock. However, for best
results in data acquisition, use a global, non-gated clock that is synchronous to the
signals under test. Using a gated clock as your acquisition clock can result in
unexpected data that does not accurately reflect the behavior of your design. The Intel

14 Design Debugging with the Signal Tap Logic Analyzer

QPS5V3 | 2017.11.06

Intel® Quartus® Prime Standard Edition Handbook Volume 3 Verification
333

Quartus Prime static timing analysis tools show the maximum acquisition clock
frequency at which you can run your design. To find the maximum frequency of the
logic analyzer clock, refer to the Timing Analysis section of the Compilation Report.

Caution: Be careful when using a recovered clock from a transceiver as an acquisition clock for
the Signal Tap Logic Analyzer. A recovered clock can cause incorrect or unexpected
behavior, particularly when the transceiver recovered clock is the acquisition clock with
the power-up trigger feature.

If you do not assign an acquisition clock in the Signal Tap Logic Analyzer Editor, Intel
Quartus Prime software automatically creates a clock pin called
auto_stp_external_clk. You must make a pin assignment to this pin, and make
sure that a clock signal in your design drives the acquisition clock.

Related Links

• Adding Signals with a Plug-In on page 337

• Managing Device I/O Pins
In Intel Quartus Prime Standard Edition Handbook Volume 2

14.3.2 Adding Signals to the Signal Tap File

Add the signals that you want to monitor to the .stp node list. You can also select
signals to define triggers. You can assign the following two signal types:

• Pre-synthesis—These signals exist after design elaboration, but before any
synthesis optimizations are done. This set of signals must reflect your Register
Transfer Level (RTL) signals.

• Post-fitting—These signals exist after physical synthesis optimizations and place-
and-route.

Note: If you are not using incremental compilation, add only pre-synthesis signals to
the .stp. Using pre-synthesis helps when you want to add a new node after you
change a design. After you perform Analysis and Elaboration, the source file changes
appear in the Node Finder.

Intel Quartus Prime software does not limit the number of signals available for
monitoring in the Signal Tap window waveform display. However, the number of
channels available is directly proportional to the number of logic elements (LEs) or
adaptive logic modules (ALMs) in the device. Therefore, there is a physical restriction
on the number of channels that are available for monitoring. Signals shown in blue
text are post-fit node names. Signals shown in black text are pre-synthesis node
names.

After successful Analysis and Elaboration, invalid signals appear in red. Unless you are
certain that these signals are valid, remove them from the .stp file for correct
operation. The Signal Tap Status Indicator also indicates if an invalid node name exists
in the .stp file.

You can tap signals if a routing resource (row or column interconnects) exists to route
the connection to the Signal Tap instance. For example, you cannot tap signals that
exist in the I/O element (IOE), because there are no direct routing resources from the
signal in an IOE to a core logic element. For input pins, you can tap the signal that is
driving a logic array block (LAB) from an IOE, or, for output pins, you can tap the
signal from the LAB that is driving an IOE.

14 Design Debugging with the Signal Tap Logic Analyzer

QPS5V3 | 2017.11.06

Intel® Quartus® Prime Standard Edition Handbook Volume 3 Verification
334

https://www.altera.com/documentation/mwh1410471376527.html#mwh1410471036713

Related Links

• Faster Compilations with Intel Quartus Prime Incremental Compilation on page
376

• Setup Tab (Signal Tap Logic Analyzer)
In Intel Quartus Prime Help

14.3.2.1 About Adding Pre-Synthesis Signals

When you add pre-synthesis signals, make all connections to the Signal Tap Logic
Analyzer before synthesis. The Compiler allocates logic and routing resources to make
the connection as if you changed your design files. For signals driving to and from
IOEs, pre-synthesis signal names coincide with the pin's signal names.

14.3.2.2 About Adding Post-Fit Signals

In the case of post-fit signals, connections that you make to the Signal Tap Logic
Analyzer are the signal names from the actual atoms in your post-fit netlist. You can
only make a connection if the signals are part of the existing post-fit netlist, and
existing routing resources are available from the signal of interest to the Signal Tap
Logic Analyzer.

In the case of post-fit output signals, tap the COMBOUT or REGOUT signal that drives
the IOE block. For post-fit input signals, signals driving into the core logic coincide
with the pin's signal name.

Note: Because NOT-gate push back applies to any register that you tap, the signal from the
atom may be inverted. You can check this by locating the signal in either the Resource
Property Editor or the Technology Map Viewer. You can also use the Technology Map
viewer and the Resource Property Editor to find post-fit node names.

Related Links

Design Flow with the Netlist Viewers
In Intel Quartus Prime Standard Edition Handbook Volume 1

14.3.2.2.1 Assigning Data Signals Using the Technology Map Viewer

You can use the Technology Map Viewer to add post-fit signal names easily. To do so,
launch the Technology Map Viewer (post-fitting) after compilation. When you find the
desired node, copy the node to either the active .stp for your design or a new .stp.

To launch the Technology Map Viewer, click Tools ➤ Netlist Viewers ➤ Technology
Map Viewer (Post-Fitting) in the Intel Quartus Prime window.

14.3.2.3 Preserving Signals

The Intel Quartus Prime software optimizes the RTL signals during synthesis and
place-and-route. RTL signal names may not appear in the post-fit netlist after
optimizations. For example, the compilation process can add tildes (~) to nets that
fan-out from a node, making it difficult to decipher which signal nets they actually
represent.

14 Design Debugging with the Signal Tap Logic Analyzer

QPS5V3 | 2017.11.06

Intel® Quartus® Prime Standard Edition Handbook Volume 3 Verification
335

http://quartushelp.altera.com/current/master.htm#mergedProjects/program/ela/ela_tab_setup.htm
https://www.altera.com/documentation/mwh1409960181641.html#mwh1409960091007

The Intel Quartus Prime software provides synthesis attributes that prevent the
Compiler to perform any optimization on the specified signals, allowing them to persist
into the post-fit netlist:

• keep—Prevents removal of combinational signals during optimization.

• preserve—Prevents removal of registers during optimization.

However, using preserving attributes can increase device resource utilization or
decrease timing performance.

Note: These processing results can cause problems when you use the incremental
compilation flow with the Signal Tap Logic Analyzer. Because you can only add post-
fitting signals to the Signal Tap Logic Analyzer in partitions of type post-fit, RTL
signals that you want to monitor may not be available, preventing their use. To avoid
this issue, use synthesis attributes to preserve signals during synthesis and place-and-
route.

If you are debugging an IP core, such as the Nios II CPU or other encrypted IP, you
might need to preserve nodes from the core to keep available for debugging with the
Signal Tap Logic Analyzer. Preserving nodes is often necessary when you use a plug-in
to add a group of signals for a particular IP.

If you use incremental compilation flow with the Signal Tap Logic Analyzer, pre-
synthesis nodes may not be connected to the Signal Tap Logic Analyzer if the affected
partition is of the post-fit type. Signal Tap issues a critical warning for all pre-synthesis
node names that it does not find in the post-fit netlist.

14.3.2.4 Node List Signal Use Options

When you add a signal to the node list, you can select options that specify how the
logic analyzer uses the signal.

To prevent a signal from triggering the analysis, disable the signal's Trigger Enable
option in the .stp file. This option is useful when you only want to see the signal's
captured data.

You can turn off the ability to view data for a signal by disabling the Data Enable
column in the .stp file. This option is useful when you want to trigger on a signal, but
have no interest in viewing that signal's data.

Related Links

Defining Triggers on page 352

14.3.2.4.1 Disabling and Enabling a Signal Tap Instance

Disable and enable Signal Tap instances in the Instance Manager pane. Physically
adding or removing instances requires recompilation after disabling and enabling a
Signal Tap instance.

14.3.2.5 Untappable Signals

Not all the post-fitting signals in your design are available in the Signal Tap : post-
fitting filter in the Node Finder dialog box.

14 Design Debugging with the Signal Tap Logic Analyzer

QPS5V3 | 2017.11.06

Intel® Quartus® Prime Standard Edition Handbook Volume 3 Verification
336

You cannot tap any of the following signal types:

• Post-fit output pins—You cannot tap a post-fit output pin directly. To make an
output signal visible, tap the register or buffer that drives the output pin. This
includes pins defined as bidirectional.

• Signals that are part of a carry chain—You cannot tap the carry out (cout0 or
cout1) signal of a logic element. Due to architectural restrictions, the carry out
signal can only feed the carry in of another LE.

• JTAG Signals—You cannot tap the JTAG control (TCK, TDI, TDO, and TMS)
signals.

• ALTGXB IP core—You cannot directly tap any ports of an ALTGXB instantiation.

• LVDS—You cannot tap the data output from a serializer/deserializer (SERDES)
block.

• DQ, DQS Signals—You cannot directly tap the DQ or DQS signals in a DDR/DDRII
design.

14.3.3 Adding Signals with a Plug-In

Instead of adding individual or grouped signals through the Node Finder, you can use
a plug-in to add groups of relevant signals of a particular type of IP. Besides easy
signal addition, plug-ins provide features such as pre-designed mnemonic tables,
useful for trigger creation and data viewing, as well as the ability to disassemble code
in captured data. The Signal Tap Logic Analyzer comes with one plug-in for the Nios II
processor.

The Nios II plug-in, for example, creates one mnemonic table in the Setup tab and
two tables in the Data tab:

• Nios II Instruction (Setup tab)—Capture all the required signals for triggering
on a selected instruction address.

• Nios II Instance Address (Data tab)—Display address of executed instructions
in hexadecimal format or as a programming symbol name if defined in an optional
Executable and Linking Format (.elf) file.

• Nios II Disassembly (Data tab)—Display disassembled code from the
corresponding address.

To add signals to the .stp file using a plug-in, perform the following steps after
running Analysis and Elaboration on your design:

1. To ensure that all the required signals are available, in the Intel Quartus Prime
software, click Assignments ➤ Settings ➤ Compiler Settings ➤ Advanced
Settings (Synthesis). Turn on Create debugging nodes for IP cores.
All the signals included in the plug-in are added to the node list.

2. Right-click the node list. On the Add Nodes with Plug-In submenu, select the
plug-in you want to use, such as the included plug-in named Nios II.
The Select Hierarchy Level dialog box appears showing the IP hierarchy of your
design. If the IP for the selected plug-in does not exist in your design, a message
informs you that you cannot use the selected plug-in.

3. Select the IP that contains the signals you want to monitor with the plug-in, and
click OK.

14 Design Debugging with the Signal Tap Logic Analyzer

QPS5V3 | 2017.11.06

Intel® Quartus® Prime Standard Edition Handbook Volume 3 Verification
337

— If all the signals in the plug-in are available, a dialog box might appear,
depending on the plug-in, where you can specify options for the plug-in.

4. With the Nios II plug-in, you can optionally select an .elf containing program
symbols from your Nios II Integrated Development Environment (IDE) software
design. Specify options for the selected plug-in, and click OK.

Related Links

• Defining Triggers on page 352

• View, Analyze, and Use Captured Data on page 333

14.3.4 Adding Finite State Machine State Encoding Registers

Finding the signals to debug finite state machines (FSM) can be challenging. Finding
nodes from the post-fit netlist may be impossible, since the Compiler may change or
optimize away FSM encoding signals. To find and map FSM signal values to the state
names that you specified in your HDL, you must perform an additional step.

The Signal Tap Logic Analyzer can detect FSMs in your compiled design. The
configuration automatically tracks the FSM state signals as well as state encoding
through the compilation process.

To add all the FSM state signals to your logic analyzer with a single command Shortcut
menu commands allow you .

For each FSM added to your Signal Tap configuration, the FSM debugging feature adds
a mnemonic table to map the signal values to the state enumeration that you provided
in your source code. The mnemonic tables enable you to visualize state machine
transitions in the waveform viewer. The FSM debugging feature supports adding FSM
signals from both the pre-synthesis and post-fit netlists.

Figure 164. Decoded FSM Mnemonics
The waveform viewer with decoded signal values from a state machine added with the FSM debugging feature.

Related Links

State Machine HDL Guidelines
In Intel Quartus Prime Standard Edition Handbook Volume 1

14.3.4.1 Modify and Restore Mnemonic Tables for State Machines

Edit any mnemonic table using the Mnemonic Table Setup dialog box. When you
add FSM state signals via the FSM debugging feature, the Signal Tap Logic Analyzer
GUI creates a mnemonic table using the format <StateSignalName>_table, where
StateSignalName is the name of the state signals that you have declared in your
RTL.

If you want to restore a mnemonic table that was modified, right-click anywhere in the
node list window and select Recreate State Machine Mnemonics. By default,
restoring a mnemonic table overwrites the existing mnemonic table that you modified.
To restore a FSM mnemonic table to a new record, turn off Overwrite existing
mnemonic table in the Recreate State Machine Mnemonics dialog box.

14 Design Debugging with the Signal Tap Logic Analyzer

QPS5V3 | 2017.11.06

Intel® Quartus® Prime Standard Edition Handbook Volume 3 Verification
338

https://www.altera.com/documentation/mwh1409960181641.html#mwh1409959610054

Note: If you have added or deleted a signal from the FSM state signal group from within the
setup tab, delete the modified register group and add the FSM signals back again.

Related Links

Creating Mnemonics for Bit Patterns on page 389

14.3.4.2 Additional Considerations for State Machines in Signal Tap

• The Signal Tap configuration GUI recognizes state machines from your design only
if you use Intel Quartus Prime Integrated Synthesis. Conversely, the state machine
debugging feature is not able to track the FSM signals or state encoding if you use
other EDA synthesis tools.

• If you add post-fit FSM signals, the Signal Tap Logic Analyzer FSM debug feature
may not track all optimization changes that are a part of the compilation process.

• If the following two specific optimizations are enabled, the Signal Tap FSM debug
feature may not list mnemonic tables for state machines in the design:

— If you enabled the Physical Synthesis optimization, state registers may be
resource balanced (register retiming) to improve fMAX. The FSM debug feature
does not list post-fit FSM state registers if register retiming occurs.

— The FSM debugging feature does not list state signals that the Compiler
packed into RAM and DSP blocks during synthesis or Fitter optimizations.

• You can still use the FSM debugging feature to add pre-synthesis state signals.

Related Links

Enabling Physical Synthesis Optimization
In Intel Quartus Prime Standard Edition Handbook Volume 1

14.3.5 Specify the Sample Depth

The Sample depth setting specifies the number of samples the Signal Tap Logic
Analyzer captures and stores, for each signal in the captured data buffer. To specify
the sample depth, select the desired number in the Sample Depth drop-down menu.
The sample depth ranges from 0 to 128K.

If device memory resources are limited, you may not be able to successfully compile
your design with the sample buffer size you have selected. Try reducing the sample
depth to reduce resource usage.

Related Links

Signal Configuration Pane (View Menu) (Signal Tap Logic Analyzer)
In Intel Quartus Prime Help

14.3.6 Capture Data to a Specific RAM Type

You have the option to select the RAM type where the Signal Tap Logic Analyzer stores
acquisition data. Once you allocate the Signal Tap Logic Analyzer buffer to a particular
RAM block, the entire RAM block becomes a dedicated resource for the logic analyzer.

RAM selection allows you to preserve a specific memory block for your design, and
allocate another portion of memory for Signal Tap Logic Analyzer data acquisition.

14 Design Debugging with the Signal Tap Logic Analyzer

QPS5V3 | 2017.11.06

Intel® Quartus® Prime Standard Edition Handbook Volume 3 Verification
339

https://www.altera.com/documentation/mwh1409960181641.html#led1441830179619
http://http://quartushelp.altera.com/current/#mapIdTopics/mwh1465494383050.htm

For example, if your design has an application that requires a large block of memory
resources, such as a large instruction or data cache, you can use MLAB, M512, or M4k
blocks for data acquisition and leave M9k blocks for the rest of your design.

To specify the RAM type to use for the Signal Tap Logic Analyzer buffer, go to the
Signal Configuration pane in the Signal Tap window, and select one Ram type
from the drop-down menu.

Use this feature only when the acquired data is smaller than the available memory of
the RAM type that you selected. The amount of data appears in the Signal Tap
resource estimator.

Related Links

Signal Configuration Pane (View Menu) (Signal Tap Logic Analyzer)
In Intel Quartus Prime Help

14.3.7 Select the Buffer Acquisition Mode

When you specify how the logic analyzer organizes the captured data buffer, you can
potentially reduce the amount of memory that Signal Tap requires for data acquisition.

There are two types of acquisition buffer within the Signal Tap Logic Analyzer—a non-
segmented (or circular) buffer and a segmented buffer.

• With a non-segmented buffer, the Signal Tap Logic Analyzer treats entire memory
space as a single FIFO, continuously filling the buffer until the logic analyzer
reaches a defined set of trigger conditions.

• With a segmented buffer, the memory space is split into separate buffers. Each
buffer acts as a separate FIFO with its own set of trigger conditions, and behaves
as a non-segmented buffer. Only a single buffer is active during an acquisition.
The Signal Tap Logic Analyzer advances to the next segment after the trigger
condition or conditions for the active segment has been reached.

When using a non-segmented buffer, you can use the storage qualification feature to
determine which samples are written into the acquisition buffer. Both the segmented
buffers and the non-segmented buffer with the storage qualification feature help you
maximize the use of the available memory space.

Figure 165. Buffer Type Comparison in the Signal Tap Logic Analyzer
The figure illustrates the differences between the two buffer types.

Newly
Captured
Data

Oldest Data
 Removed

Post-Trigger Pre-Trigger Center Trigger

1 1

All
Trigger Level

Segment 1 Segment 2 Segment 3 Segment 4

Segment
Trigger Level

1 1 ... 0 1 1 0 ... 0 1 1 1 ... 0 1 1 0 ... 0 1

0 0 1 0 0 1 0 1

Segment
Trigger Level

Segment
Trigger Level

1

(b) Segmented Buffer

(a) Circular Buffer

Both non-segmented and segmented buffers can use a preset trigger position (Pre-
Trigger, Center Trigger, Post-Trigger). Alternatively, you can define a custom trigger
position using the State-Based Triggering tab. Refer to Specify Trigger Position for
more details.

14 Design Debugging with the Signal Tap Logic Analyzer

QPS5V3 | 2017.11.06

Intel® Quartus® Prime Standard Edition Handbook Volume 3 Verification
340

http://http://quartushelp.altera.com/current/#mapIdTopics/mwh1465494383050.htm

Notes to figure:

Related Links

• Specify Trigger Position on page 372

• Using the Storage Qualifier Feature on page 343

14.3.7.1 Non-Segmented Buffer

The non-segmented buffer is the default buffer type in the Signal Tap Logic Analyzer.

At runtime, the logic analyzer stores data in the buffer until the buffer fills up. From
that point on, new data overwrites the oldest data, until a specific trigger event
occurs. The amount of data the buffer captures after the trigger event depends on the
Trigger position setting:

• To capture most data before the trigger occurs, select Post trigger position from
the list

• To capture most data after the trigger, select Pre trigger position.

• To center the trigger position in the data, select Center trigger position.

Alternatively, use the custom State-based triggering flow to define a custom trigger
position within the capture buffer.

Related Links

Specify Trigger Position on page 372

14.3.7.2 Segmented Buffer

In a segmented buffer, the acquisition memory is split into segments of even size, and
you define a set of trigger conditions for each segment. Each segment acts as a non-
segmented buffer. A segmented buffer allows you to debug systems that contain
relatively infrequent recurring events.

If you want to have separate trigger conditions for each of the segmented buffers, you
must use the state-based trigger flow. The figure shows an example of a segmented
buffer system.

14 Design Debugging with the Signal Tap Logic Analyzer

QPS5V3 | 2017.11.06

Intel® Quartus® Prime Standard Edition Handbook Volume 3 Verification
341

Figure 166. System that Generates Recurring Events
In this design, you want to ensure that the correct data is written to the SRAM controller by monitoring the
RDATA port whenever the address H'0F0F0F0F is sent into the RADDR port.

QDR SRAM
Controller

WADDR[17..0]
RADDR[17..0]

WDATA[35..0]
RDATA[35..0]

CMD[1..0]

INCLK

A[17..0]
Q[17..0]
D[17..0]
BWSn[1..0]
RPSn
WPSn

K, Kn

QDR
SRAM

Reference Design Top-Level File

Stratix Device

Pipeline
Registers

(Optional)

K_FB_OUT
K_FB_IN

C, Cn

SRAM Interface Signals

With the buffer acquisition feature. you can monitor multiple read transactions from
the SRAM device without running the Signal Tap Logic Analyzer again, because you
split the memory to capture the same event multiple times, without wasting allocated
memory. The buffer captures as many cycles as the number of segments you define
under the Data settings in the Signal Configuration pane.

To enable and configure buffer acquisition, select Segmented in the Signal Tap Logic
Analyzer Editor and determine the number of segments to use. In the example in the
figure, selecting sixty-four 64-sample segments allows you to capture 64 read cycles.

14.3.8 Specify the Pipeline Factor

The Pipeline factor setting indicates the number of pipeline registers that you can
add to boost the fMAX of the Signal Tap Logic Analyzer. You can specify the pipeline
factor in the Signal Configuration pane. The pipeline factor ranges from 0 to 5, with
a default value of 0.

You can also set the pipeline factor when you instantiate the Signal Tap Logic Analyzer
component from your Platform Designer (Standard) system:

1. Double-click Signal Tap Logic Analyzer component in the IP Catalog.

2. Specify the Pipeline Factor, along with other parameter values.

14 Design Debugging with the Signal Tap Logic Analyzer

QPS5V3 | 2017.11.06

Intel® Quartus® Prime Standard Edition Handbook Volume 3 Verification
342

Figure 167. Specifying the Pipeline Factor from Platform Designer (Standard)

Note: Setting the pipeline factor does not guarantee an increase in fMAX, as the pipeline
registers may not be in the critical paths.

14.3.9 Using the Storage Qualifier Feature

The Storage Qualifier feature allows you to filter out individual samples not relevant to
debugging the design.

The Signal Tap Logic Analyzer offers a snapshot in time of the data stored in the
acquisition buffers. By default, the Signal Tap Logic Analyzer writes into acquisition
memory with data samples on every clock cycle. With a non-segmented buffer, there
is one data window that represents a comprehensive snapshot of the data stream.
Conversely, segmented buffers use several smaller sampling windows spread out over
more time, with each sampling window representing a contiguous data set.

With analysis using acquisition buffers you can capture most functional errors in a
chosen signal set, provided adequate trigger conditions and a generous sample depth
for the acquisition. However, each data window can have a considerable amount of
unnecessary data; for example, long periods of idle signals between data bursts. The
default behavior in the Signal Tap Logic Analyzer doesn't discard the redundant sample
bits.

The Storage Qualifier feature allows you to establish a condition that acts as a write
enable to the buffer during each clock cycle of data acquisition, thus allowing a more
efficient use of acquisition memory over a longer period of analysis.

Because you can create a discontinuity between any two samples in the buffer, the
Storage Qualifier feature is equivalent to creating a custom segmented buffer in which
the number and size of segment boundaries are adjustable.

Note: You can only use the Storage Qualifier feature with a non-segmented buffer. The IP
Catalog flow only supports the Input Port mode for the Storage Qualifier feature.

14 Design Debugging with the Signal Tap Logic Analyzer

QPS5V3 | 2017.11.06

Intel® Quartus® Prime Standard Edition Handbook Volume 3 Verification
343

Figure 168. Data Acquisition Using Different Modes of Controlling the Acquisition Buffer

Notes to figure:

1. Non-segmented buffers capture a fixed sample window of contiguous data.

2. Segmented buffers divide the buffer into fixed sized segments, with each segment
having an equal sample depth.

3. Storage Qualifier allows you to define a custom sampling window for each
segment you create with a qualifying condition, thus potentially allowing a larger
time scale of coverage.

There are six storage qualifier types available under the Storage Qualifier feature:

• Continuous (default) Turns the Storage Qualifier off.

• Input port

• Transitional

• Conditional

• Start/Stop

• State-based

14 Design Debugging with the Signal Tap Logic Analyzer

QPS5V3 | 2017.11.06

Intel® Quartus® Prime Standard Edition Handbook Volume 3 Verification
344

Figure 169. Storage Qualifier Settings

Upon the start of an acquisition, the Signal Tap Logic Analyzer examines each clock
cycle and writes the data into the buffer based upon the storage qualifier type and
condition. Acquisition stops when a defined set of trigger conditions occur.

The Signal Tap Logic Analyzer evaluates trigger conditions independently of storage
qualifier conditions.

Related Links

Define Trigger Conditions on page 332

14.3.9.1 Input Port Mode

When using the Input port mode, the Signal Tap Logic Analyzer takes any signal from
your design as an input. During acquisition, if the signal is high on the clock edge, the
Signal Tap Logic Analyzer stores the data in the buffer. If the signal is low on the clock
edge, the Logic Analyzer ignores the data sample. If you don't specify an internal
node, the Logic Analyzer creates and connects a pin to this input port.

If you are creating a Signal Tap Logic Analyzer instance through an .stp file, specify
the storage qualifier signal using the input port field located on the Setup tab. You
must specify this port for your project to compile.

If you use the parameter editor, the storage qualification input port, if specified,
appears in the generated instantiation template. You can then connect this port to a
signal in your RTL.

14 Design Debugging with the Signal Tap Logic Analyzer

QPS5V3 | 2017.11.06

Intel® Quartus® Prime Standard Edition Handbook Volume 3 Verification
345

Figure 170. Comparing Continuous and Input Port Capture Mode in Data Acquisition of a
Recurring Data Pattern

• Continuous Mode:

• Input Port Storage Qualifier:

14.3.9.2 Transitional Mode

In Transitional mode, the Logic Analyzer monitors changes in a set of signals, and
writes new data in the acquisition buffer only when it detects a change. You select the
signals for monitoring using the check boxes in the Storage Qualifier column.

Figure 171. Transitional Storage Qualifier Setup

Select signals to monitor

Figure 172. Comparing Continuous and Transitional Capture Mode in Data Acquisition of a
Recurring Data Pattern

• Continuous:

• Transitional mode:

14 Design Debugging with the Signal Tap Logic Analyzer

QPS5V3 | 2017.11.06

Intel® Quartus® Prime Standard Edition Handbook Volume 3 Verification
346

14.3.9.3 Conditional Mode

In Conditional mode, the Signal Tap Logic Analyzer determines whether to store a
sample by evaluating a combinational function of predefined signals within the node
list. The Signal Tap Logic Analyzer writes into the buffer during the clock cycles in
which the condition you specify evaluates TRUE.

You can select either Basic AND, Basic OR, Comparison, or Advanced storage
qualifier conditions. A Basic AND or Basic OR condition matches each signal to one
of the following:

• Don’t Care

• Low

• High

• Falling Edge

• Rising Edge

• Either Edge

If you specify a Basic AND storage qualifier condition for more than one signal, the
Signal Tap Logic Analyzer evaluates the logical AND of the conditions.

You can specify any other combinational or relational operators with the enabled signal
set for storage qualification through advanced storage conditions.

You can define storage qualification conditions similar to the manner in which you
define trigger conditions.

Figure 173. Conditional Storage Qualifier Setup
The figure details the conditional storage qualifier setup in the .stp file.

Storage Enable Storage condition

If the signal is not enabled for storage,
it can’t be part of the Storage Qualifier condition

14 Design Debugging with the Signal Tap Logic Analyzer

QPS5V3 | 2017.11.06

Intel® Quartus® Prime Standard Edition Handbook Volume 3 Verification
347

Figure 174. Comparing Continuous and Conditional Capture Mode in Data Acquisition of a
Recurring Data Pattern

The data pattern is the same in both cases.

• Continuous sampling capture mode:

• Conditional sampling capture mode:

Related Links

• Basic Trigger Conditions on page 352

• Comparison Trigger Conditions on page 353

• Advanced Trigger Conditions on page 355

14.3.9.4 Start/Stop Mode

The Start/Stop mode uses two sets of conditions, one to start data capture and one to
stop data capture. If the start condition evaluates to TRUE, Signal Tap Logic Analyzer
stores the buffer data every clock cycle until the stop condition evaluates to TRUE,
which then pauses the data capture. The Logic Analyzer ignores additional start
signals received after the data capture starts. If both start and stop evaluate to TRUE
at the same time, the Logic Analyzer captures a single cycle.

Note: You can force a trigger by pressing the Stop button if the buffer fails to fill to
completion due to a stop condition.

Figure 175. Start/Stop Mode Storage Qualifier Setup
Start condition Stop Condition

Storage Qualifier Enabled signals

14 Design Debugging with the Signal Tap Logic Analyzer

QPS5V3 | 2017.11.06

Intel® Quartus® Prime Standard Edition Handbook Volume 3 Verification
348

Figure 176. Comparing Continuous and Start/Stop Acquisition Modes for a Recurring Data
Pattern

• Continuous Mode:

• Start/Stop Storage Qualifier:

14.3.9.5 State-Based

The State-based storage qualification mode is part of the State-based triggering flow.
The state based triggering flow evaluates a conditional language to define how the
Signal Tap Logic Analyzer writes data into the buffer. With the State-based trigger
flow, you have command over boolean and relational operators to guide the execution
flow for the target acquisition buffer.

When you enable the storage qualifier feature for the State-based flow, two additional
commands become available: start_store and stop_store. These commands are
similar to the Start/Stop capture conditions. Upon the start of acquisition, the Signal
Tap Logic Analyzer doesn't write data into the buffer until a start_store action is
performed. The stop_store command pauses the acquisition. If both start_store
and stop_store actions occur within the same clock cycle, the Logic Analyzer stores
a single sample into the acquisition buffer.

Related Links

State-Based Triggering on page 363

14.3.9.6 Showing Data Discontinuities

When you turn on Record data discontinuities, the Signal Tap Logic Analyzer marks
the samples during which the acquisition paused from a storage qualifier. This marker
is displayed in the waveform viewer after acquisition completes.

14.3.9.7 Disable Storage Qualifier

You can quickly turn off the storage qualifier with the Disable Storage Qualifier
option, and perform a continuous capture. This option is run-time reconfigurable.
Changing storage qualifier mode from the Type field requires a recompilation of the
project.

14 Design Debugging with the Signal Tap Logic Analyzer

QPS5V3 | 2017.11.06

Intel® Quartus® Prime Standard Edition Handbook Volume 3 Verification
349

Related Links

Runtime Reconfigurable Options on page 383

14.3.10 Manage Multiple Signal Tap Files and Configurations

You can debug different blocks in your design by grouping related monitoring signals.
Likewise, you can use a group of signals to define multiple trigger conditions. Each
combination of signals, capture settings, and trigger conditions determines a debug
configuration, and one configuration can have zero or more associated data logs.

Signal Tap Logic Analyzer allows you to save debug configurations in more than
one .stp file. Alternatively, you can embed multiple configurations within the
same .stp file, and use the Data Log as a managing tool.

Note: Each .stp file is associated with a programming (.sof) file. To function correctly, the
settings in the .stp file you use at runtime must match Signal Tap settings in
the .sof file you use to program the device.

Related Links

Ensure Setting Compatibility Between .stp and .sof Files on page 382

14.3.10.1 Data Log Pane

The Data Log pane displays all Signal Tap configurations and data capture results
stored within a single .stp file.

• To save the current configuration or capture in the Data Log—and .stp file, click

Edit ➤ Save to Data Log. Alternatively, click the Save to Data Log icon at
the top of the Data Log pane.

• To generate a log entry after every data capture, click Edit ➤ Enable Data Log.
Alternatively, check the box at the top of the Data Log pane.

The Data Log displays its contents in a tree hierarchy. The active items display a
different icon.

Table 110. Data Log Items

Item Icon Contains one or
more

Comments

Unselected Selected

Instance Signal Set

Signal Set Trigger The Signal Set changes whenever you add a new
signal to Signal Tap. After a change in the Signal
Set, you need to recompile.

Trigger Capture Log A trigger changes when you change any trigger
condition. These changes do not require
recompilation.

Capture Log

The name on each entry displays the wall-clock time when Signal Tap Logic Analyzer
triggered, and the time elapsed from start acquisition to trigger activation. You can
rename entries so they make sense to you.

14 Design Debugging with the Signal Tap Logic Analyzer

QPS5V3 | 2017.11.06

Intel® Quartus® Prime Standard Edition Handbook Volume 3 Verification
350

To switch between configurations, double-click an entry in the Data Log. As a result,
the Setup tab updates to display the active signal list and trigger conditions.

Example 34. Simple Data Log

On this example, the Data Log displays one instance with three signal set
configurations.

14.3.10.2 SOF Manager

The SOF Manager is in the JTAG Chain Configuration pane.

With the SOF Manager you can embed multiple SOFs into one .stp file. This action
lets you move the .stp file to a different location, either on the same computer or
across a network, without including the associated .sof separately. To embed a new

SOF in the .stp file, click the Attach SOF File icon .

Figure 177. SOF Manager

Attach SOF File Icon

As you switch between configurations in the Data Log, you can extract the SOF that is
compatible with that configuration.

To download the new SOF to the FPGA, click the Program Device icon in the SOF
Manager, after ensuring that the configuration of your .stp matches the design
programmed into the target device.

Related Links

Data Log Pane on page 350

14 Design Debugging with the Signal Tap Logic Analyzer

QPS5V3 | 2017.11.06

Intel® Quartus® Prime Standard Edition Handbook Volume 3 Verification
351

14.4 Defining Triggers

You specify various types of trigger conditions using the Signal Tap Logic Analyzer on
the Signal Configuration pane. When you start the Signal Tap Logic Analyzer, it
samples activity continuously from the monitored signals. The Signal Tap Logic
Analyzer “triggers”—that is, the logic analyzer stops and displays the data—when a
condition or set of conditions that you specified have been reached.

14.4.1 Basic Trigger Conditions

If you select the Basic AND or Basic OR trigger type, you must specify the trigger
pattern for each signal you added in the .stp. To specify the trigger pattern, right-
click the Trigger Conditions column and click the desired pattern. Set the trigger
pattern to any of the following conditions:

• Don’t Care

• Low

• High

• Falling Edge

• Rising Edge

• Either Edge

For buses, type a pattern in binary, or right-click and select Insert Value to enter the
pattern in other number formats. Note that you can enter X to specify a set of “don’t
care” values in either your hexadecimal or your binary string. For signals in the .stp
file that have an associated mnemonic table, you can right-click and select an entry
from the table to specify pre-defined conditions for the trigger.

When you add signals through plug-ins, you can create basic triggers using predefined
mnemonic table entries. For example, with the Nios II plug-in, if you specify an .elf
file from your Nios II IDE design, you can type the name of a function from your Nios
II code. The logic analyzer triggers when the Nios II instruction address matches the
address of the code function name that you specify.

Data capture stops and the Logic Analyzer stores the data in the buffer when the
logical AND of all the signals for a given trigger condition evaluates to TRUE.

Related Links

View, Analyze, and Use Captured Data on page 386

14.4.1.1 Using the Basic OR Trigger Condition with Nested Groups

When you specify a set of signals as a nested group (group of groups) with the Basic
OR trigger type, Signal Tap Logic Analyzer generates an advanced trigger condition.
This condition sorts signals within groups to minimize the need to recompile your
design. As long as the parent-child relationships of nodes are kept constant, the
advanced trigger condition does not change. You can modify the sibling relationships
of nodes and not need to recompile your design.

14 Design Debugging with the Signal Tap Logic Analyzer

QPS5V3 | 2017.11.06

Intel® Quartus® Prime Standard Edition Handbook Volume 3 Verification
352

The evaluation precedence of a nested trigger condition starts at the bottom-level with
the leaf-groups. The Logic Analyzer uses the resulting logic value to compute the
parent group’s logic value. If you manually set the value of a group, the logic value of
the group's members doesn't influence the result of the group trigger. To create a
nested trigger condition:

1. Select Basic OR under Trigger Conditions.

2. In the Setup tab, select several nodes. Include groups in your selection.

3. Right-click the Setup tab and select Group.

4. Select the nested group and right-click to set a group trigger condition that applies
the reduction AND, OR, NAND, NOR, XOR, XNOR, or logical TRUE or FALSE.

Note: You can only select OR and AND group trigger conditions for bottom-level
groups (groups with no groups as children).

Figure 178. Applying Trigger Condition to Nested Group

14.4.2 Comparison Trigger Conditions

The Comparison trigger allows you to compare multiple grouped bits of a bus to an
expected integer value by specifying simple comparison conditions on the bus node.
The Comparison trigger preserves all the trigger conditions that the Basic OR trigger
includes. You can use the Comparison trigger in combination with other triggers. You
can also switch between Basic OR trigger and Comparison trigger at run-time,
without the need for recompilation.

Signal Tap Logic Analyzer supports the following types of Comparison trigger
conditions:

• Single-value comparison—compares a bus node’s value to a numeric value that
you specify. Use one of these operands for comparison: >, >=, ==, <=, <.
Returns 1 when the bus node matches the specified numeric value.

• Interval check—verifies whether a bus node’s value confines to an interval that
you define. Returns 1 when the bus node's value lies within the specified bounded
interval.

14 Design Debugging with the Signal Tap Logic Analyzer

QPS5V3 | 2017.11.06

Intel® Quartus® Prime Standard Edition Handbook Volume 3 Verification
353

Follow these rules when using the Comparison trigger condition:

• Apply the Comparison trigger only to bus nodes consisting of leaf nodes.

• Do not form sub-groups within a bus node.

• Do not enable or disable individual trigger nodes within a bus node.

• Do not specify comparison values (in case of single-value comparison) or
boundary values (in case of interval check) exceeding the selected node’s bus-
width.

14.4.2.1 Specifying the Comparison Trigger Conditions

Follow these steps to specify the Comparison trigger conditions:

1. From the Setup tab, select Comparison under Trigger Conditions.

2. Right-click the node in the trigger editor, and select Compare.

Figure 179. Selecting the Comparison Trigger Condition

Select Comparison from the
Trigger Conditions list

Right-click your node and select Compare
to set trigger condition values

3. Select the Comparison type from the Compare window.

— If you choose Single-value comparison as your comparison type, specify
the operand and value.

— If you choose Interval check as your comparison type, provide the lower and
upper bound values for the interval.

You can also specify if you want to include or exclude the boundary values.

14 Design Debugging with the Signal Tap Logic Analyzer

QPS5V3 | 2017.11.06

Intel® Quartus® Prime Standard Edition Handbook Volume 3 Verification
354

Figure 180. Specifying the Comparison Values
Compares the bus node’s value to
a specified numeric value

Verifies whether the bus node’s value
confines to a specified bounded interval

Specify inclusion or exclusion of boundary values

4. Click OK. The trigger editor displays the resulting comparison expression in the
group node condition text box.

Note: You can modify the comparison condition in the text box with a valid
expression.

Figure 181. Resulting Comparison Condition in Text Box

Group node condition text box displaying
the resulting comparison expression

Modify the comparison condition in the text box
with a valid expression

14.4.3 Advanced Trigger Conditions

To capture data for a given combination of conditions, build an advanced trigger. The
Signal Tap Logic Analyzer provides the Advanced Trigger tab, which helps you build
a complex trigger expression using a GUI.

Open the Advanced Trigger tab by selecting Advanced in the Trigger Conditions
drop-down menu.

14 Design Debugging with the Signal Tap Logic Analyzer

QPS5V3 | 2017.11.06

Intel® Quartus® Prime Standard Edition Handbook Volume 3 Verification
355

Figure 182. Accessing the Advanced Trigger Condition Tab

Select Advanced from the
Trigger Conditions List

Figure 183. Advanced Trigger Condition Tab

Node List Pane

Object Library Pane

Advanced Trigger Condition Editor Window

To build a complex trigger condition in an expression tree, drag-and-drop operators
from the Object Library pane and the Node List pane into the Advanced Trigger
Configuration Editor window.

To configure the operators’ settings, double-click or right-click the operators that you
placed and click Properties.

Table 111. Advanced Triggering Operators

Category Name

Signal Detection Edge and Level Detector

Input Objects Bit
Bit Value
Bus
Bus Value

Comparison Less Than
Less Than or Equal To
Equality
Inequality
Greater Than or Equal To
Greater Than

Bitwise Bitwise Complement
Bitwise AND
Bitwise OR
Bitwise XOR

Logical Logical NOT
Logical AND
Logical OR
Logical XOR

Reduction Reduction AND
Reduction OR
Reduction XOR

Shift Left Shift

continued...

14 Design Debugging with the Signal Tap Logic Analyzer

QPS5V3 | 2017.11.06

Intel® Quartus® Prime Standard Edition Handbook Volume 3 Verification
356

Category Name

Right Shift

Custom Trigger HDL

Adding many objects to the Advanced Trigger Condition Editor can make the work
space cluttered and difficult to read. To keep objects organized while you build your
advanced trigger condition, use the shortcut menu and select Arrange All Objects.
Alternatively, use the Zoom-Out command to fit more objects into the Advanced
Trigger Condition Editor window.

14.4.3.1 Examples of Advanced Triggering Expressions

The following examples show how to use Advanced Triggering:

Figure 184. Bus outa Is Greater Than or Equal to Bus outb
Trigger when bus outa is greater than or equal to outb.

Figure 185. Enable Signal Has a Rising Edge
Trigger when bus outa is greater than or equal to bus outb, and when the enable signal has a rising edge.

14 Design Debugging with the Signal Tap Logic Analyzer

QPS5V3 | 2017.11.06

Intel® Quartus® Prime Standard Edition Handbook Volume 3 Verification
357

Figure 186. Bitwise AND Operation
Trigger when bus outa is greater than or equal to bus outb, or when the enable signal has a rising edge. Or,
when a bitwise AND operation has been performed between bus outc and bus outd, and all bits of the result
of that operation are equal to 1.

14.4.4 Custom Trigger HDL Object

Signal Tap Logic Analyzer allows you to use your own HDL module to create a custom
trigger condition. You can use the Custom Trigger HDL object to simulate your
triggering logic and ensure that the logic itself is not faulty. Additionally, you can tap
instances of modules anywhere in the hierarchy of your design, without having to
manually route all the necessary connections.

The Custom Trigger HDL object appears in the Object Library pane of the Advanced
Trigger editor.

Figure 187. Object Library

14.4.4.1 Using the Custom Trigger HDL Object

To define a custom trigger flow:

1. Select the trigger you want to edit.

2. Open the Advanced Trigger tab by selecting Advanced in the Trigger
Conditions drop-down menu.

3. Add to your project the HDL source file that contains the trigger module using the
Project Navigator.

— Alternatively, append the HDL for your trigger module to a source file already
included in the project.

14 Design Debugging with the Signal Tap Logic Analyzer

QPS5V3 | 2017.11.06

Intel® Quartus® Prime Standard Edition Handbook Volume 3 Verification
358

Figure 188. HDL Trigger in the Project Navigator

4. Implement the inputs and outputs that your Custom Trigger HDL module requires.

5. Drag in your Custom Trigger HDL object and connect the object’s data input bus
and result output bit to the final trigger result.

Figure 189. Custom Trigger HDL Object

6. Right-click your Custom Trigger HDL object and configure the object’s properties.

Figure 190. Configure Object Properties

7. Compile your design.

8. Acquire data with Signal Tap using your custom Trigger HDL object.

14 Design Debugging with the Signal Tap Logic Analyzer

QPS5V3 | 2017.11.06

Intel® Quartus® Prime Standard Edition Handbook Volume 3 Verification
359

Example 35. Verilog HDL Triggers

The following trigger uses configuration bitstream:

module test_trigger
 (

input acq_clk, reset,
input[3:0] data_in,
input[1:0] pattern_in,
output reg trigger_out

);
 always @(pattern_in) begin

case (pattern_in)
2'b00:

trigger_out = &data_in;
2'b01:

trigger_out = |data_in;
2'b10:

trigger_out = 1'b0;
2'b11:

trigger_out = 1'b1;
endcase

 end
endmodule

This trigger does not have configuration bitstream:

module test_trigger_no_bs
 (

input acq_clk, reset,
input[3:0] data_in,
output reg trigger_out

);
 assign trigger_out = &data_in;
endmodule

14.4.4.2 Required Inputs and Outputs of Custom Trigger HDL Module

Table 112. Custom Trigger HDL Module Required Inputs and Outputs

Name Description Input/Output Required/ Optional

acq_clk Acquisition clock that Signal Tap uses Input Required

reset Reset that Signal Tap uses when restarting a
capture.

Input Required

data_in • Data input you connect in the Advanced
Trigger editor.

• Data your module uses to trigger.

Input Required

pattern_in • Module’s input for the configuration bitstream
property.

• Runtime configurable property that you can
set from Signal Tap GUI to change the
behavior of your trigger logic.

Input Optional

trigger_out Output signal of your module that asserts when
trigger conditions met.

Output Required

14.4.4.3 Properties of Custom Trigger HDL Module

14 Design Debugging with the Signal Tap Logic Analyzer

QPS5V3 | 2017.11.06

Intel® Quartus® Prime Standard Edition Handbook Volume 3 Verification
360

Table 113. Custom Trigger HDL Module Properties

Property Description

Custom HDL Module Name Module name of your triggering logic.

Configuration Bitstream • Allows you to create runtime-configurable trigger logic which can
change its behavior based upon the value of the configuration
bitstream.

• The configuration bitstream property is read as binary, therefore it
must contain only the characters 1 and 0. The bit-width (number of
1s and 0s) must match the pattern_in bit width.

• A blank configuration bitstream implies that your module does not
have a pattern_in input.

Pipeline Specifies the number of pipeline stages in your triggering logic.
For example, if after receiving a triggering input the LA needs three clock
cycles to assert the trigger output, you can denote a pipeline value of
three.

14.4.5 Trigger Condition Flow Control

The Trigger Condition Flow allows you to define the relationship between a set of
triggering conditions. Signal Tap Logic Analyzer Signal Configuration pane offers two
flow control mechanisms for organizing trigger conditions:

• Sequential Triggering—default triggering flow. Sequential triggering allows you
to define up to 10 triggering levels that must be satisfied before the acquisition
buffer finishes capturing.

• State-Based Triggering—gives the greatest control over your acquisition buffer.
Custom-based triggering allows you to organize trigger conditions into states
based on a conditional flow that you define.

You can use sequential or state based triggering with either a segmented or a non-
segmented buffer.

14.4.5.1 Sequential Triggering

Sequential triggering flow allows you to cascade up to 10 levels of triggering
conditions. Signal Tap Logic Analyzer sequentially evaluates each of the conditions.

When the last triggering condition evaluates to TRUE, the Signal Tap Logic Analyzer
triggers the acquisition buffer. For segmented buffers, every acquisition segment after
the first triggers on the last condition that you specified. Use the Simple Sequential
Triggering feature with basic triggers, comparison triggers, advanced triggers, or a
mix of all three. The figure illustrates the simple sequential triggering flow for non-
segmented and segmented buffers.

The external trigger is considered as trigger level 0. The external trigger must be
evaluated before the main trigger levels are evaluated.

14 Design Debugging with the Signal Tap Logic Analyzer

QPS5V3 | 2017.11.06

Intel® Quartus® Prime Standard Edition Handbook Volume 3 Verification
361

Figure 191. Sequential Triggering Flow
Segmented BufferNon Segmented Buffer

n ≤ 10

Trigger Condition n

Trigger Condition 1

Trigger Condition 2

Trigger Condition 1

Trigger Condition 2

Trigger Condition n

Trigger Condition n

Trigger Condition n

n - 2 transitions

Acquisition Segment m
trigger

trigger

trigger

Acquisition Buffer
trigger

n - 2 transitions

m-2 transitions

Acquisition Segment 2

Acquisition Segment 1

Notes to figure:

1. The acquisition buffer starts capture when all n triggering levels are satisfied,
where n<10.

2. If you define an external trigger input, the Logic Analyzer evaluates it before
evaluating all other trigger conditions.

14.4.5.1.1 Configuring the Sequential Triggering Flow

To configure Signal Tap Logic Analyzer for sequential triggering:

1. On Trigger Flow Control, select Sequential

2. On Trigger Conditions, select the number of trigger conditions from the drop-
down list.
The Node List pane now displays the same number of trigger condition columns.

3. Configure each trigger condition in the Node List pane.

You can enable/disable any trigger condition from the column header.

Figure 192. Sequential Triggering Flow Configuration

14 Design Debugging with the Signal Tap Logic Analyzer

QPS5V3 | 2017.11.06

Intel® Quartus® Prime Standard Edition Handbook Volume 3 Verification
362

14.4.5.2 State-Based Triggering

With state-based triggering, a state diagram organizes the events that trigger the
acquisition buffer. The states capture all actions that the acquisition buffer performs,
and each state contains conditional expressions that define transition conditions.

Custom state-based triggering grants control over triggering condition arrangement,
and allows for more efficient use of the space available in the acquisition buffer,
because the Logic Analyzer only captures samples of interest.

To help you describe the relationship between triggering conditions, the state-based
triggering flow provides tooltips within the flow GUI. Additionally, you can use the
Signal Tap Trigger Flow Description Language, which is based upon conditional
expressions.

Figure 193. State-Based Triggering Flow

n ≤ 20

Segmented Acquisition Buffer

First Acquisition Segment Next Acquisition Segment Next Acquisition Segment Last Acquisition Segment

Transition
 Condition: i

TC: j

TC: k

TC: l S: 2
TCS: b S: 3

TCS: c

State: 1
Trigger Condition Set: a

 S: n (last state)
TCS: d

segment_trigger segment_trigger segment_trigger segment_trigger

Notes to figure:

1. You can define up to 20 different states.

2. If you define an external trigger input, the logic analyzer evaluates it before any
conditions in the custom state-based triggering flow.

Each state allows you to define a set of conditional expressions. Each conditional
expression is a Boolean expression that depends on a combination of triggering
conditions, counters, and status flags. You configure the triggering conditions within
the Setup tab. The Signal Tap Logic Analyzer custom-based triggering flow provides
counters and status flags.

Within each conditional expression you define a set of actions. Actions include
triggering the acquisition buffer to stop capture, a modification to either a counter or
status flag, or a state transition.

Trigger actions can apply to either a single segment of a segmented acquisition buffer
or to the entire non-segmented acquisition buffer. Each trigger action provides you
with an optional count that specifies the number of samples the buffer captures before
the logic analyzer stops acquisition of the current segment. The count argument
allows you to control the amount of data the buffer captures before and after a
triggering event occurs.

14 Design Debugging with the Signal Tap Logic Analyzer

QPS5V3 | 2017.11.06

Intel® Quartus® Prime Standard Edition Handbook Volume 3 Verification
363

Resource manipulation actions allow you to increment and decrement counters or set
and clear status flags. The logic analyzer uses counter and status flag resources as
optional inputs in conditional expressions. Counters and status flags are useful for
counting the number of occurrences of certain events and for aiding in triggering flow
control.

The state-based triggering flow allows you to capture a sequence of events that may
not necessarily be contiguous in time. For example, a communication transaction
between two devices that includes a hand shaking protocol containing a sequence of
acknowledgements.

14.4.5.2.1 State-Based Triggering Flow Tab

The State-Based Trigger Flow tab is the control interface for the custom state-
based triggering flow.

This tab is only available when you select State-Based on the Trigger Flow Control
list. If you specify Trigger Flow Control as Sequential, the State-Based Trigger
Flow tab is not visible.

Figure 194. State-Based Triggering Flow Tab

The State-Based Trigger Flow tab contains three panes:

State Diagram Pane

The State Diagram pane provides a graphical overview of your triggering flow. this
pane displays the number of available states and the state transitions. To adjust the
number of available states, use the menu above the graphical overview.

14 Design Debugging with the Signal Tap Logic Analyzer

QPS5V3 | 2017.11.06

Intel® Quartus® Prime Standard Edition Handbook Volume 3 Verification
364

State Machine Pane

The State Machine pane contains the text entry boxes where you define the
triggering flow and actions associated with each state.

• You can define the triggering flow using the Signal Tap Trigger Flow Description
Language, a simple language based on “if-else” conditional statements.

• Tooltips appear when you move the mouse over the cursor, to guide command
entry into the state boxes.

• The GUI provides a syntax check on your flow description in real-time and
highlights any errors in the text flow.

The State Machine description text boxes default to show one text box per state. You
can also have the entire flow description shown in a single text field. This option can
be useful when copying and pasting a flow description from a template or an external
text editor. To toggle between one window per state, or all states in one window,
select the appropriate option under State Display mode.

Related Links

Signal Tap Trigger Flow Description Language on page 366

Resources Pane

The Resources pane allows you to declare status flags and counters for your Custom
Triggering Flow's conditional expressions.

• You can increment/decrement counters or set/clear status flags within your
triggering flow.

• You can specify up to 20 counters and 20 status flags.

• To initialize counter and status flags, right-click the row in the table and select Set
Initial Value.

• To specify a counter width, right-click the counter in the table and select Set
Width.

• To assist in debugging your trigger flow specification, the logic analyzer
dynamically updates counters and flag values after acquisition starts.

The Configurable at runtime settings allow you to control which options can change
at runtime without requiring a recompilation.

Table 114. Runtime Reconfigurable Settings, State-Based Triggering Flow

Setting Description

Destination of goto action Allows you to modify the destination of the state transition at runtime.

Comparison values Allows you to modify comparison values in Boolean expressions at runtime. In
addition, you can modify the segment_trigger and trigger action post-fill
count argument at runtime.

Comparison operators Allows you to modify the operators in Boolean expressions at runtime.

Logical operators Allows you to modify the logical operators in Boolean expressions at runtime.

Related Links

• Performance and Resource Considerations on page 380

• Runtime Reconfigurable Options on page 383

14 Design Debugging with the Signal Tap Logic Analyzer

QPS5V3 | 2017.11.06

Intel® Quartus® Prime Standard Edition Handbook Volume 3 Verification
365

14.4.5.2.2 Trigger Lock Mode

Trigger lock mode restricts changes to only the configuration settings that you specify
as Configurable at runtime. The runtime configurable settings for the Custom
Trigger Flow tab are on by default.

Note: You may get some performance advantages by disabling some of the runtime
configurable options.

You can restrict changes to your Signal Tap configuration to include only the options
that do not require a recompilation. Trigger lock-mode allows you to make changes
that reflect immediately in the device.

1. On the Setup tab, point to Lock Mode and select Allow trigger condition
changes only.

Figure 195. Allow Trigger Conditions Change Only

2. Modify the Trigger Flow conditions.

Incremental Route lock-mode restricts the GUI to only allow changes that require an
Incremental Route compilation using Rapid Recompile. Use Rapid Recompile to
perform incremental routing and gain a 2-4x speedup over the initial full compilation.

14.4.5.3 Signal Tap Trigger Flow Description Language

The Trigger Flow Description Language is based on a list of conditional expressions per
state to define a set of actions.

To describe the actions the Logic Analyzer evaluates when a state is reached, you
follow this syntax:

Syntax of Trigger Flow Description Language

state <state_label>:
 <action_list>
 if (<boolean_expression>)
 <action_list>
 [else if (<boolean_expression>)
 <action_list>]
 [else
 <action_list>]

• Non-terminals are delimited by "<>".

• Optional arguments are delimited by "[]"

• The priority for evaluation of conditional statements is from top to bottom.

• The Trigger Flow Description Language allows multiple else if conditions.

<state_label> on page 367

<boolean_expression> on page 367

<action_list> on page 368

14 Design Debugging with the Signal Tap Logic Analyzer

QPS5V3 | 2017.11.06

Intel® Quartus® Prime Standard Edition Handbook Volume 3 Verification
366

Related Links

Custom Triggering Flow Application Examples on page 397

14.4.5.3.1 <state_label>

Identifies a given state. You use the state label to start describing the actions the
Logic Analyzer evaluates once said state is reached. You can also use the state label
with the goto command.

The state description header syntax is:
state <state_label>

The description of a state ends with the beginning of another state or the end of the
whole trigger flow description.

14.4.5.3.2 <boolean_expression>

Collection of operators and operands that evaluate into a Boolean result. The
operators can be logical or relational. Depending on the operator, the operand can
reference a trigger condition, a counter and a register, or a numeric value. To group a
set of operands within an expression, you use parentheses.

Table 115. Logical Operators
Logical operators accept any boolean expression as an operand.

Operator Description Syntax

! NOT operator ! expr1

&& AND operator expr1 && expr2

|| OR operator expr1 || expr2

Table 116. Relational Operators
You use relational operators on counters or status flags.

Operator Description Syntax

> Greater than <identifier> > <numerical_value>

>= Greater than or Equal
to

<identifier> >= <numerical_value>

== Equals <identifier> == <numerical_value>

!= Does not equal <identifier> != <numerical_value>

<= Less than or equal to <identifier> <= <numerical_value>

< Less than <identifier> < <numerical_value>

Notes to table:
1. <identifier> indicates a counter or status flag.
2. <numerical_value> indicates an integer.

14 Design Debugging with the Signal Tap Logic Analyzer

QPS5V3 | 2017.11.06

Intel® Quartus® Prime Standard Edition Handbook Volume 3 Verification
367

Note: • The <boolean_expression> in an if statement can contain a single event or
multiple event conditions.

• When the boolean expression evaluates TRUE, the logic analyzer evaluates all the
commands in the <action_list> concurrently.

14.4.5.3.3 <action_list>

List of actions that the Logic Analyzer performs within a state once a condition is
satisfied.

• Each action must end with a semicolon (;).

• If you specify more than one action within an if or an else if clause, you must
delimit the action_list with begin and end tokens.

Possible actions include:

Resource Manipulation Action

The resources the trigger flow description uses can be either counters or status flags.

Table 117. Resource Manipulation Actions

Action Description Syntax

increment Increments a counter resource by 1 increment <counter_identifier>;

decrement Decrements a counter resource by 1 decrement <counter_identifier>;

reset Resets counter resource to initial value reset <counter_identifier>;

set Sets a status flag to 1 set <register_flag_identifier>;

clear Sets a status flag to 0 clear <register_flag_identifier>;

Buffer Control Actions

Actions that control the acquisition buffer.

Table 118. Buffer Control Actions

Action Description Syntax

trigger Stops the acquisition for the current buffer and
ends analysis. This command is required in every
flow definition.

trigger <post-fill_count>;

segment_trigger Available only in segmented acquisition mode.
Ends acquisition of the current segment. After
evaluating this command, the Signal Tap Logic
Analyzer starts acquiring from the next segment. If
all segments are written, the Logic Analyzer

segment_trigger <post-fill_count>;

continued...

14 Design Debugging with the Signal Tap Logic Analyzer

QPS5V3 | 2017.11.06

Intel® Quartus® Prime Standard Edition Handbook Volume 3 Verification
368

Action Description Syntax

overwrites the oldest segment with the latest
sample. When a trigger action is evaluated the
acquisition stops.

start_store Active only in state-based storage qualifier mode.
Asserts the write_enable to the Signal Tap
acquisition buffer.

start_store

stop_store Active only in state-based storage qualifier mode.
De-asserts the write_enable signal to the Signal
Tap acquisition buffer.

stop_store

Both trigger and segment_trigger actions accept an optional post-fill_count
argument.

Related Links

Post-fill Count on page 373

State Transition Action

Specifies the next state in the custom state control flow. The syntax is:
goto <state_label>;

14.4.5.4 Using the State-Based Storage Qualifier Feature

Selecting a state-based storage qualifier type enables the start_store and
stop_store actions. When you use these actions in conjunction with the expressions
of the State-based trigger flow, you get maximum flexibility to control data written
into the acquisition buffer.

Note: You can only apply the start_store and stop_store commands to a non-
segmented buffer.

The start_store and stop_store commands are similar to the start and stop
conditions of the start/stop storage qualifier mode. If you enable storage
qualification, Signal Tap Logic Analyzer doesn't write data into the acquisition buffer
until the start_store command occurs. However, in the state-based storage
qualifier type you must include a trigger command as part of the trigger flow
description. This trigger command is necessary to complete the acquisition and
display the results on the waveform display.

14.4.5.4.1 Storage Qualification Feature for the State-Based Trigger Flow.

This trigger flow description contains three trigger conditions that happen at different
times after you click Start Analysis:

State 1: ST1:
 if (condition1)
 start_store;
 else if (condition2)
 trigger value;
 else if (condition3)
 stop_store;

14 Design Debugging with the Signal Tap Logic Analyzer

QPS5V3 | 2017.11.06

Intel® Quartus® Prime Standard Edition Handbook Volume 3 Verification
369

Figure 196. Capture Scenario for Storage Qualification with the State-Based Trigger Flow

When you apply the trigger flow to the scenario in the figure:

a b c Sample

n samples

m samples

Time Scale for data stream
at the start of acquisition

Condition 1 occurs Condition 3 occursCondition 2 occurs

1. The Signal Tap Logic Analyzer does not write into the acquisition buffer until
Condition 1 occurs (sample a).

2. When Condition 2 occurs (sample b), the logic analyzer evaluates the trigger
value command, and continues to write into the buffer to finish the acquisition.

3. The trigger flow specifies a stop_store command at sample c, which occurs m
samples after the trigger point.

4. If the data acquisition finishes the post-fill acquisition samples before Condition 3
occurs, the logic analyzer finishes the acquisition and displays the contents of the
waveform. In this case, the capture ends if the post-fill count value is < m.

5. If the post-fill count value in the Trigger Flow description 1 is > m samples, the
buffer pauses acquisition indefinitely, provided there is no recurrence of Condition
1 to trigger the logic analyzer to start capturing data again.

The Signal Tap Logic Analyzer continues to evaluate the stop_store and
start_store commands even after evaluating the trigger. If the acquisition paused,
click Stop Analysis to manually stop and force the acquisition to trigger. You can use
counter values, flags, and the State diagram to help you perform the trigger flow. The
counter values, flags, and the current state update in real-time during a data
acquisition.

Example 36. Real data acquisition of the previous scenario

Figure 197. Storage Qualification with Post-Fill Count Value Less than m (Acquisition
Successfully Completes)
The data capture finishes successfully. It uses a buffer with a sample depth of 64, m = n = 10 , and post-
fill count = 5.

14 Design Debugging with the Signal Tap Logic Analyzer

QPS5V3 | 2017.11.06

Intel® Quartus® Prime Standard Edition Handbook Volume 3 Verification
370

Figure 198. Storage Qualification with Post-Fill Count Value Greater than m (Acquisition
Indefinitely Paused)
The logic analyzer pauses indefinitely, even after a trigger condition occurs due to a stop_store condition.
This scenario uses a sample depth of 64, with m = n = 10 and post-fill count = 15.

Figure 199. Waveform After Forcing the Analysis to Stop

14 Design Debugging with the Signal Tap Logic Analyzer

QPS5V3 | 2017.11.06

Intel® Quartus® Prime Standard Edition Handbook Volume 3 Verification
371

The combination of using counters, Boolean and relational operators in conjunction
with the start_store and stop_store commands can give a clock-cycle level of
resolution to controlling the samples that are written into the acquisition buffer.

Example 37. Trigger flow description that skips three clock cycles of samples after hitting
condition 1

Code:

State 1: ST1
 start_store
 if (condition1)
 begin
 stop_store;
 goto ST2;
 end
State 2: ST2
 if (c1 < 3)
 increment c1; //skip three clock cycles; c1 initialized to 0
 else if (c1 == 3)
 begin
 start_store;//start_store necessary to enable writing to finish
 //acquisition
 trigger;
 end

The figures show the data transaction on a continuous capture and the data capture
when you apply the Trigger flow description.

Figure 200. Continuous Capture of Data Transaction

Figure 201. Capture of Data Transaction with Trigger Flow Description Applied

14.4.6 Specify Trigger Position

You can specify the amount of data the Logic Analyzer acquires before and after a
trigger event. Positions for Runtime and Power-Up triggers are separate.

Signal Tap Logic Analyzer offers three pre-defined ratios of pre-trigger data to post-
trigger data:

• Pre—Saves signal activity that occurred after the trigger (12% pre-trigger, 88%
post-trigger).

• Center—Saves 50% pre-trigger and 50% post-trigger data.

• Post—Saves signal activity that occurred before the trigger (88% pre-trigger,
12% post-trigger).

14 Design Debugging with the Signal Tap Logic Analyzer

QPS5V3 | 2017.11.06

Intel® Quartus® Prime Standard Edition Handbook Volume 3 Verification
372

These pre-defined ratios apply to both non-segmented buffers and segmented buffers.

Related Links

State-Based Triggering on page 363

14.4.6.1 Post-fill Count

In a custom state-based triggering flow with the segment_trigger and trigger
buffer control actions, you can use the post-fill_count argument to specify a
custom trigger position.

• If you do not use the post-fill_count argument, the trigger position for the
affected buffer defaults to the trigger position you specified in the Setup tab.

• In the trigger buffer control action (for non-segmented buffers), post-
fill_count specifies the number of samples to capture before stopping data
acquisition.

• In the segment_trigger buffer control action (for segmented buffer), post-
fill_count specifies a data segment.

Note: In the case of segment_trigger, acquisition of the current buffer stops
immediately if a subsequent triggering action is issued in the next state,
regardless of the current buffer's post-fill count. The Logic Analyzer discards
the remaining unfilled post-count acquisitions in the current buffer, and
displays them as grayed-out samples in the data window.

When the Signal Tap data window displays the captured data, the trigger position
appears as the number of post-count samples from the end of the acquisition segment
or buffer.

Sample Number of Trigger Position = (N – Post-Fill Count)

In this case, N is the sample depth of either the acquisition segment or non-
segmented buffer.

Related Links

Buffer Control Actions on page 368

14.4.7 Create a Power-Up Trigger

Power-up triggers capture events that occur during device initialization, immediately
after you power or reset the FPGA.

The typical use of Signal Tap Logic Analyzer is triggering events that occur during
normal device operation. You start an analysis manually once the target device is fully
powered on and the JTAG connection for the device is available. With Signal Tap
Power-Up Trigger feature, the Signal Tap Logic Analyzer captures data immediately
after device initialization.

You can add a different Power-Up Trigger to each logic analyzer instance in the Signal
Tap Instance Manager pane.

14 Design Debugging with the Signal Tap Logic Analyzer

QPS5V3 | 2017.11.06

Intel® Quartus® Prime Standard Edition Handbook Volume 3 Verification
373

14.4.7.1 Enabling a Power-Up Trigger

To enable the Power-Up Trigger for a logic analyzer instance, right-click the instance
and click Enable Power-Up Trigger. Alternatively, click Edit ➤ Enable Power-Up
Trigger.

Power-Up Trigger appears as a child instance below the name of the selected instance.
The node list displays the default trigger conditions.

Figure 202. Enabling Power-Up Trigger in Signal Tap Logic Analyzer Editor

To disable a Power-Up Trigger, right-click the instance and click Disable Power-Up
Trigger.

14.4.7.2 Manage and Configure Power-Up and Runtime Trigger Conditions

You can create basic, comparison, and advanced trigger conditions for your enabled
Power-Up Trigger as you do with a Run-Time Trigger.

Since each instance now has two sets of trigger conditions—the Power-Up Trigger and
the Run-Time Trigger—you can differentiate between the two with color coding. Power-
Up Trigger conditions that you can adjust are color coded light blue, while Run-Time
Trigger conditions you cannot adjust remain white.

To switch between the trigger conditions of the Power-Up Trigger and the Run-Time
Trigger, double-click the instance name or the Power-Up Trigger name in the Instance
Manager.

You cannot make changes to Power-Up Trigger conditions that would normally require
a full recompile with Runtime Trigger conditions, such as adding signals, deleting
signals, or changing between basic, comparison, and advanced triggers. To apply
these changes to the Power-Up Trigger conditions, first make the changes using the
Runtime Trigger conditions.

Note: Any change made to the Power-Up Trigger conditions requires that you recompile the
Signal Tap Logic Analyzer instance, even if a similar change to the Runtime Trigger
conditions does not require a recompilation.

To copy trigger conditions from a Run-Time Trigger to a Power-Up Trigger or vice
versa, right-click the trigger name in the Instance Manager and click Duplicate
Trigger. Alternatively, select the trigger name and click Edit ➤ Duplicate Trigger.

You can also use In-System Sources and Probes in conjunction with the Signal Tap
Logic Analyzer to force trigger conditions. The In-System Sources and Probes feature
allows you to drive and sample values on to selected nets over the JTAG chain.

14 Design Debugging with the Signal Tap Logic Analyzer

QPS5V3 | 2017.11.06

Intel® Quartus® Prime Standard Edition Handbook Volume 3 Verification
374

Related Links

Design Debugging Using In-System Sources and Probes on page 49

14.4.8 External Triggers

To trigger Signal Tap Logic Analyzer from an external source, you can create an
external trigger input.

The external trigger input behaves like trigger condition 1, in that it must evaluate to
TRUE before the logic analyzer evaluates any other configured trigger conditions.

Signal Tap Logic Analyzer supplies a signal to trigger external devices or other logic
analyzer instances. These features allow you to synchronize external logic analysis
equipment with the internal logic analyzer. Power-Up Triggers can use the external
triggers feature, but they must use the same source or target signal as their
associated Run-Time Trigger.

You can use external triggers to perform cross-triggering on a hard processor system
(HPS):

• Use your processor debugger to configure the HPS to obey or disregard cross-
trigger request from the FPGA, and to issue or not issue cross-trigger requests to
the FPGA.

• Use your processor debugger in combination with the Signal Tap external trigger
feature to develop a dynamic combination of cross-trigger behaviors.

• You can use the cross-triggering feature with the ARM Development Studio 5
(DS-5) software to implement a system-level debugging solution for your Intel
FPGA SoC.

Related Links

• FPGA-Adaptive Software Debug and Performance Analysis white paper

• Signal Configuration Pane
In Intel Quartus Prime Help

14.4.8.1 Using the Trigger Out of One Analyzer as the Trigger In of Another
Analyzer

An advanced feature of the Signal Tap Logic Analyzer is the ability to use the
Trigger out of one analyzer as the Trigger in to another analyzer. This feature allows
you to synchronize and debug events that occur across multiple clock domains.

To perform this operation, first turn on Trigger out for the source logic analyzer
instance. On the Instance list of the Trigger out trigger, select the targeted logic
analyzer instance. For example, if the instance named auto_signaltap_0 should
trigger auto_signaltap_1, select auto_signaltap_1|trigger_in .

Turning on Trigger out automatically enables the Trigger in of the targeted logic
analyzer instance and fills in the Instance field of the Trigger in trigger with the
Trigger out signal from the source logic analyzer instance. In this example,
auto_signaltap_0 is targeting auto_signaltap_1. The Trigger In Instance field
of auto_signaltap_1 is automatically filled in with auto_signaltap_0|
trigger_out.

14 Design Debugging with the Signal Tap Logic Analyzer

QPS5V3 | 2017.11.06

Intel® Quartus® Prime Standard Edition Handbook Volume 3 Verification
375

http://www.altera.com/literature/wp/wp-01198-fpga-software-debug-soc.pdf
http://quartushelp.altera.com/current/master.htm#mergedProjects/program/ela/ela_tab_sig_config.htm

14.5 Compiling the Design

To incorporate the Signal Tap logic in your design and enable the JTAG connection, you
must compile your project. When you add a .stp file to your project, the Signal Tap
Logic Analyzer becomes part of your design. When you debug your design with a
traditional external logic analyzer, you must often make changes to the signals you
want to monitor as well as the trigger conditions.

Note: Because these adjustments require that you recompile your design when using the
Signal Tap Logic Analyzer, use the Signal Tap Logic Analyzer feature along with
incremental compilation in the Intel Quartus Prime software to reduce recompilation
time.

14.5.1 Faster Compilations with Intel Quartus Prime Incremental
Compilation

You can add a Signal Tap Logic Analyzer instance to your design without recompiling
your original source code. Incremental compilation enables you to preserve the
synthesis and fitting results of your original design.

When you compile your design including a .stp file, Intel Quartus Prime software
automatically adds the sld_signaltap and sld_hub entities to the compilation
hierarchy. These two entities are the main components of the Signal Tap Logic
Analyzer, providing the trigger logic and JTAG interface required for operation.

Incremental compilation is also useful when you want to modify the configuration of
the .stp file. For example, you can change the buffer sample depth or memory type
without performing a full compilation. Instead, you only recompile the Signal Tap Logic
Analyzer, configured as its own design partition.

14.5.1.1 Enabling Incremental Compilation for Your Design

When enabled for your design, the Signal Tap Logic Analyzer is always a separate
partition. After the first compilation, you can use the Signal Tap Logic Analyzer to
analyze signals from the post-fit netlist. If your partitions are designed correctly,
subsequent compilations due to Signal Tap Logic Analyzer settings take less time.

The netlist type for the top-level partition defaults to source. To take advantage of
incremental compilation, specify the Netlist types for the partitions you want to tap as
Post-fit.

Related Links

Intel Quartus Prime Incremental Compilation for Hierarchical and Team-Based Design
documentation

14 Design Debugging with the Signal Tap Logic Analyzer

QPS5V3 | 2017.11.06

Intel® Quartus® Prime Standard Edition Handbook Volume 3 Verification
376

https://www.altera.com/documentation/mwh1409960181641.html#mwh1409958382198
https://www.altera.com/documentation/mwh1409960181641.html#mwh1409958382198

14.5.1.2 Using Incremental Compilation with the Signal Tap Logic Analyzer

The Signal Tap Logic Analyzer uses the incremental compilation flow by default. For all
signals that you want to connect to the Signal Tap Logic Analyzer from the post-fit
netlist:

1. In the Design Partitions window, set the netlist type of the partition that contains
the signals to Post-Fit, with a Fitter Preservation Level of Placement and
Routing.

2. In the Node Finder, use the Signal Tap: post-fitting filter to add the signals of
interest to your Signal Tap configuration file.

3. If you want to add signals from the pre-synthesis netlist, set the netlist type to
Source File and use the Signal Tap: pre-synthesis filter in the Node Finder.
Do not use the netlist type Post-Synthesis with the Signal Tap Logic Analyzer.

Caution: When using post-fit and pre-synthesis nodes:

• Read all incremental compilation guidelines to ensure the proper partitioning of a
project.

• To speed up compile time, use only post-fit nodes for partitions specified as
preservation-level post-fit.

• Do not mix pre-synthesis and post-fit nodes in any partition. If you must tap pre-
synthesis nodes for a particular partition, make all tapped nodes in that partition
pre-synthesis nodes and change the netlist type to source in the design partitions
window.

Node names can differ between a pre-synthesis netlist and a post-fit netlist. In
general, registers and user input signals share common names between the two
netlists. During compilation, certain optimizations change the names of combinational
signals in your RTL. If the type of node name chosen does not match the netlist type,
the compiler may not be able to find the signal to connect to your Signal Tap Logic
Analyzer instance for analysis. The compiler issues a critical warning to alert you of
this scenario. The signal that is not connected is tied to ground in the Signal Tap
data tab.

If you do use incremental compilation flow with the Signal Tap Logic Analyzer and
source file changes are necessary, be aware that you may have to remove compiler-
generated post-fit net names. Source code changes force the affected partition to go
through resynthesis. During synthesis, the compiler cannot find compiler-generated
net names from a previous compilation.

Note: Intel FPGA recommends using only registered and user-input signals as debugging
taps in your .stp whenever possible.

Both registered and user-supplied input signals share common node names in the pre-
synthesis and post-fit netlist. As a result, using only registered and user-supplied
input signals in your .stp limits the changes you need to make to your Signal Tap
Logic Analyzer configuration.

You can check the nodes that are connected to each Signal Tap instance using the In-
System Debugging compilation reports. These reports list each node name you
selected to connect to a Signal Tap instance, the netlist type used for the particular
connection, and the actual node name used after compilation. If the incremental

14 Design Debugging with the Signal Tap Logic Analyzer

QPS5V3 | 2017.11.06

Intel® Quartus® Prime Standard Edition Handbook Volume 3 Verification
377

compilation flow is not used, the In-System Debugging reports are located in the
Analysis & Synthesis folder. If the incremental compilation flow is used, this report is
located in the Partition Merge folder.

To verify that your original design was not modified, examine the messages in the
Partition Merge section of the Compilation Report.

Unless you make changes to your design partitions that require recompilation, only
the Signal Tap design partition is recompiled. If you make subsequent changes to only
the .stp, only the Signal Tap design partition must be recompiled, reducing your
recompilation time.

14.5.2 Prevent Changes Requiring Recompilation

Configure the .stp to prevent changes that normally require recompilation. To do
this, select a Lock mode from above the node list in the Setup tab. To lock your
configuration, choose Allow trigger condition changes only.

Figure 203. Allow Trigger Conditions Change Only

Related Links

Verify Whether You Need to Recompile Your Project on page 382

14.5.3 Incremental Route with Rapid Recompile

You can use Incremental Route with Rapid Recompile to decrease compilation times.
After performing a full compilation on your design, you can use the Incremental Route
flow to achieve a 2-4x speedup over a flat compile. The Incremental Route flow is not
compatible with Partial Reconfiguration.

Intel Quartus Prime Standard Edition software supports Incremental Route with Rapid
Recompile for Arria V, Cyclone V, and Stratix V devices.

Related Links

Running Rapid Recompile
In Intel Quartus Prime Pro Edition Handbook Volume 1

14.5.3.1 Using the Incremental Route Flow

To use the Incremental Route flow:

1. Open your design and run Analysis & Elaboration (or a full compilation) to give
node visibility in Signal Tap.

2. Add Signal Tap to your design.

3. In the Signal Tap Signal Configuration pane, specify Manual in the Nodes
Allocated field for Trigger and Data nodes (and Storage Qualifier, if used).

14 Design Debugging with the Signal Tap Logic Analyzer

QPS5V3 | 2017.11.06

Intel® Quartus® Prime Standard Edition Handbook Volume 3 Verification
378

https://www.altera.com/documentation/jbr1414694395857.html#jbr1414694395857

Figure 204. Manually Allocate Nodes

Manual node allocation allows you to control the number of nodes compiled into
the design, which is critical for the Incremental Route flow.

When you select Auto allocation, the number of nodes compiled into the design
matches the number of nodes in the Setup tab. If you add a node later, you
create a mismatch between the amount of nodes the device requires and the
amount of compiled nodes, and you must perform a full compilation.

4. Specify the number of nodes that you estimate necessary for the debugging
process. You can increase the number of nodes later, but this requires more
compilation time.

5. Add the nodes that you want to tap.

6. If you have not fully compiled your project, run a full compilation. Otherwise, start
incremental compile using Rapid Recompile.

7. Debug and determine additional signals of interest.

8. (Optional) Select Allow incremental route changes only lock-mode.

Figure 205. Incremental Route Lock-Mode

9. Add additional nodes in the Signal Tap Setup tab.

— Do not exceed the number of manually allocated nodes you specified.

— Avoid making changes to non-runtime configurable settings.

10. Click the Rapid Recompile icon from the toolbar. Alternatively, click Processing
➤ Start Rapid Recompile.

Note: The previous steps set up your design for Incremental Route, but the actual
Incremental Route process begins when you perform a Rapid Recompile.

14 Design Debugging with the Signal Tap Logic Analyzer

QPS5V3 | 2017.11.06

Intel® Quartus® Prime Standard Edition Handbook Volume 3 Verification
379

14.5.3.2 Tips to Achieve Maximum Speedup

• Basic AND (which applies to Storage Qualifier as well as trigger input) is the
fastest for the Incremental Route flow.

• Basic OR is slower for the Incremental Route flow, but if you avoid changing the
parent-child relationship of nodes within groups, you can minimize the impact on
compile time. You can change the sibling relationships of nodes.

— Basic OR and advanced triggers require re-synthesis when you change the
number/names of tapped nodes.

• Use the Incremental Route lock-mode to avoid inadvertent changes requiring a full
compilation.

14.5.4 Timing Preservation with the Signal Tap Logic Analyzer

In addition to verifying functionality, timing closure is one of the most crucial
processes in successful operation of your design.

Note: When you compile a project with a Signal Tap Logic Analyzer without the use of
incremental compilation, you must add IP to your existing design. This addition often
impacts the existing placement, routing, and timing of your design. To minimize the
effect that the Signal Tap Logic Analyzer has on your design, use incremental
compilation for your project. Incremental compilation is the default setting in new
designs. You can easily enable incremental compilation in existing designs. When the
Signal Tap Logic Analyzer is in a design partition, it has little to no affect on your
design.

For Intel Arria 10 devices, the Intel Quartus Prime Standard Edition software does not
support timing preservation for post-fit taps with Rapid Recompile.

Use the following techniques to help maintain timing:

• Avoid adding critical path signals to your .stp.

• Minimize the number of combinational signals you add to your .stp, and add
registers whenever possible.

• Specify an fMAX constraint for each clock in your design.

Related Links

Timing Closure and Optimization
In Intel Quartus Prime Standard Edition Handbook Volume 2

14.5.5 Performance and Resource Considerations

When you perform logic analysis of your design, you can see the necessary trade-off
between runtime flexibility, timing performance, and resource usage.

The Signal Tap Logic Analyzer allows you to select runtime configurable parameters to
balance the need for runtime flexibility, speed, and area.

The default values of the runtime configurable parameters provide maximum
flexibility, so you can complete debugging as quickly as possible; however, you can
adjust these settings to determine whether there is a more appropriate configuration

14 Design Debugging with the Signal Tap Logic Analyzer

QPS5V3 | 2017.11.06

Intel® Quartus® Prime Standard Edition Handbook Volume 3 Verification
380

https://www.altera.com/documentation/mwh1410471376527.html#mwh1410471203263

for your design. Because performance results are design-dependent, try these options
in different combinations until you achieve the desired balance between functionality,
performance, and utilization.

14.5.5.1 Signal Tap Logic in Critical Path

If Signal Tap logic is part of your critical path, follow these tips to speed up the
performance of the Signal Tap Logic Analyzer:

• Disable runtime configurable options—Certain resources are allocated to
accommodate for runtime flexibility. If you use either advanced triggers or State-
based triggering flow, disable runtime configurable parameters for a boost in fMAX
of the Signal Tap logic.

— If you are using State-based triggering flow, try disabling the Goto state
destination option and performing a recompilation before disabling the other
runtime configurable options. The Goto state destination option has the
greatest impact on fMAX, as compared to the other runtime configurable
options.

• Minimize the number of signals that have Trigger Enable selected—By
default, Signal Tap Logic Analyzer enable the Trigger Enable option for all signals
that you add to the .stp file. For signals that you do not plan to use as triggers,
turn this option off.

• Turn on Physical Synthesis for register retiming—If many (more than the
number of inputs that fit in a LAB) enabled triggering signals fan-in logic to a
gate-based triggering condition (basic trigger condition or a logical reduction
operator in the advanced trigger tab), turn on Perform register retiming. This
can help balance combinational logic across LABs.

14.5.5.2 Signal Tap Logic Using Critical Resources

If your design is resource constrained, follow these tips to reduce the logic or memory
the Signal Tap Logic Analyzer uses:

• Disable runtime configurable options—Disabling runtime configurability for
advanced trigger conditions or runtime configurable options in the State-based
triggering flow results in fewer LEs.

• Minimize the number of segments in the acquisition buffer—You can reduce
the logic resources that the Signal Tap Logic Analyzer uses if you limit the
segments in your sampling buffer

• Disable the Data Enable for signals that you use only for triggering—By
default, Signal Tap Logic Analyzer enables data enable options for all signals.
Turning off the data enable option for signals you use only as trigger inputs saves
on memory resources.

14.6 Program the Target Device or Devices

After you add the Signal Tap Logic Analyzer to your project and re-compile, you can
configure the FPGA target device.

If you want to debug multiple designs simultaneously, configure the device from
the .stp instead of the Intel Quartus Prime Programmer. This allows you to open
more than one .stp file and program multiple devices.

14 Design Debugging with the Signal Tap Logic Analyzer

QPS5V3 | 2017.11.06

Intel® Quartus® Prime Standard Edition Handbook Volume 3 Verification
381

14.6.1 Ensure Setting Compatibility Between .stp and .sof Files

A .stp file is compatible with a .sof file when the settings for the logic analyzer,
such as the size of the capture buffer and the signals you use for monitoring or
triggering, match the programming settings of the target device. If the files are not
compatible, you can still program the device, but you cannot run or control the logic
analyzer from the Signal Tap Logic Analyzer Editor.

• To ensure programming compatibility, program your device with the .sof file
generated in the most recent compilation.

• To check whether a particular .sof is compatible with the current Signal Tap
configuration, attach the .sof to the SOF manager.

Note: When the Signal Tap Logic Analyzer detects incompatibility after the analysis starts,
the Intel Quartus Prime software generates a system error message containing two
CRC values: the expected value and the value retrieved from the .stp instance on the
device. The CRC value comes from all Signal Tap settings that affect the compilation.

Although having a Intel Quartus Prime project is not required when using an .stp, it
is recommended. The project database contains information about the integrity of the
current Signal Tap Logic Analyzer session. Without the project database, there is no
way to verify that the current .stp file matches the .sof file in the device. If you
have an .stp file that does not match the .sof file, the Signal Tap Logic Analyzer can
capture incorrect data.

Related Links

Manage Multiple Signal Tap Files and Configurations on page 350

14.6.2 Verify Whether You Need to Recompile Your Project

Before starting a debugging session, do not make any changes to the .stp settings
that require recompiling the project.

To verify whether a change you made requires recompiling the project, check the
Signal Tap status display at the top of the Instance Manager pane. This feature
allows you to undo the change, so that you do not need to recompile your project.

Related Links

Prevent Changes Requiring Recompilation on page 378

14.7 Running the Signal Tap Logic Analyzer

Debugging Signal Tap Logic Analyzer is similar using an external logic analyzer. You
initialize the logic analyzer by starting an analysis. When your trigger event occurs,
the logic analyzer stores the captured data in the device's memory buffer, and then
transfers this data to the .stp file with the JTAG connection.

You can also perform the equivalent of a force trigger instruction that lets you view
the captured data currently in the buffer without a trigger event occurring.

The flowchart shows how you operate the Signal Tap Logic Analyzer. indicates where
Power-Up and Runtime Trigger events occur and when captured data from these
events is available for analysis.

14 Design Debugging with the Signal Tap Logic Analyzer

QPS5V3 | 2017.11.06

Intel® Quartus® Prime Standard Edition Handbook Volume 3 Verification
382

Figure 206. Power-Up and Runtime Trigger Events Flowchart

Manually Run
Signal Tap Logic Analyzer

Compile Design

Start

End

Yes

No

No

Yes

Yes

No

Program Device

No

Yes

Manually Read
Data from Device

Trigger Occurred?

Analyze Data: Power-Up
or Run-Time Trigger

Continue Debugging?Make Changes to Setup
(If Needed)

Changes Require
Recompile?

Data Downloaded?

Manually Stop Analyzer

Possible Missed Trigger
(Unless Power-Up
Trigger Enabled)

You can also use In-System Sources and Probes in conjunction with the Signal Tap
Logic Analyzer to force trigger conditions. The In-System Sources and Probes feature
allows you to drive and sample values on to selected signals over the JTAG chain.

Related Links

Design Debugging Using In-System Sources and Probes on page 49

14.7.1 Runtime Reconfigurable Options

When you use Runtime Trigger mode, you can change certain settings in the .stp
without recompiling your design.

Table 119. Runtime Reconfigurable Features

Runtime Reconfigurable Setting Description

Basic Trigger Conditions and Basic Storage
Qualifier Conditions

You can change without recompiling all signals that have the Trigger
condition turned on to any basic trigger condition value

Comparison Trigger Conditions and Comparison
Storage Qualifier Conditions

All the comparison operands, the comparison numeric values, and the
interval bound values are runtime-configurable.
You can also switch from Comparison to Basic OR trigger at runtime
without recompiling.

Advanced Trigger Conditions and Advanced
Storage Qualifier Conditions

Many operators include runtime configurable settings. For example, all
comparison operators are runtime-configurable. Configurable settings
appear with a white background in the block representation. This
runtime reconfigurable option is turned on in the Object Properties
dialog box.

Switching between a storage-qualified and a
continuous acquisition

Within any storage-qualified mode, you can switch to continuous
capture mode without recompiling the design. To enable this feature,
turn on disable storage qualifier.

State-based trigger flow parameters Refer to Runtime Reconfigurable Settings, State-Based Triggering
Flow

14 Design Debugging with the Signal Tap Logic Analyzer

QPS5V3 | 2017.11.06

Intel® Quartus® Prime Standard Edition Handbook Volume 3 Verification
383

Runtime Reconfigurable options can save time during the debugging cycle by allowing
you to cover a wider possible scenario of events without the need to recompile the
design. You may experience a slight impact to the performance and logic utilization.
You can turn off runtime re-configurability for advanced trigger conditions and the
state-based trigger flow parameters, boosting performance and decreasing area
utilization.

To configure the .stp file to prevent changes that normally require recompilation in
the Setup tab, select Allow Trigger Condition changes only above the node list.

In Incremental Route lock mode, Allow incremental route changes only, limits to
changes that only require an Incremental Route compilation, and not a full compile.

This example illustrates a potential use case for Runtime Reconfigurable features, by
providing a storage qualified enabled State-based trigger flow description, and
showing how to modify the size of a capture window at runtime without a recompile.
This example gives you equivalent functionality to a segmented buffer with a single
trigger condition where the segment sizes are runtime reconfigurable.

state ST1:
if (condition1 && (c1 <= m))// each "segment" triggers on condition
 // 1
begin // m = number of total "segments"
 start_store;
 increment c1;
 goto ST2:
End

else (c1 > m) // This else condition handles the last
 // segment.
begin
 start_store
 Trigger (n-1)
end

state ST2:
if (c2 >= n) //n = number of samples to capture in each
 //segment.
begin
 reset c2;
 stop_store;
 goto ST1;
end

else (c2 < n)
begin
 increment c2;
 goto ST2;
end

Note: m x n must equal the sample depth to efficiently use the space in the sample buffer.

The next figure shows the segmented buffer that the trigger flow example describes.

Figure 207. Segmented Buffer Created with Storage Qualifier and State-Based Trigger
Total sample depth is fixed, where m x n must equal sample depth.

Segment 1

1 n

Segment 2

1 n

Segment m

1 n

14 Design Debugging with the Signal Tap Logic Analyzer

QPS5V3 | 2017.11.06

Intel® Quartus® Prime Standard Edition Handbook Volume 3 Verification
384

During runtime, you can modify the values m and n. Changing the m and n values in
the trigger flow description adjust the segment boundaries without recompiling.

You can add states into the trigger flow description and selectively mask out specific
states and enable other ones at runtime with status flags.

This example is like the previous example with an additional state inserted. You use
this extra state to specify a different trigger condition that does not use the storage
qualifier feature. You insert status flags into the conditional statements to control the
execution of the trigger flow.

state ST1 :
 if (condition2 && f1) // additional state added for a non-
segmented
 // acquisition set f1 to enable state
 begin
 start_store;
 trigger
 end
 else if (! f1)
 goto ST2;
state ST2:
 if ((condition1 && (c1 <= m) && f2) // f2 status flag used to mask
state. Set f2
 // to enable
 begin
 start_store;
 increment c1;
 goto ST3:
 end
 else (c1 > m)
 start_store
 Trigger (n-1)
 end
state ST3:
 if (c2 >= n)
 begin
 reset c2;
 stop_store;
 goto ST1;
 end
 else (c2 < n)
 begin
 increment c2;
 goto ST2;
 end

14.7.2 Signal Tap Status Messages

The table describes the text messages that might appear in the Signal Tap Status
Indicator in the Instance Manager pane before, during, and after a data acquisition.
Use these messages to monitor the state of the logic analyzer or what operation it is
performing.

Table 120. Text Messages in the Signal Tap Status Indicator

Message Message Description

Not running The Signal Tap Logic Analyzer is not running. There is no connection to a device or
the device is not configured.

(Power-Up Trigger) Waiting for
clock (1)

The Signal Tap Logic Analyzer is performing a Runtime or Power-Up Trigger
acquisition and is waiting for the clock signal to transition.

continued...

14 Design Debugging with the Signal Tap Logic Analyzer

QPS5V3 | 2017.11.06

Intel® Quartus® Prime Standard Edition Handbook Volume 3 Verification
385

Message Message Description

Acquiring (Power-Up)
pre-trigger data (1)

The trigger condition has not been evaluated yet. A full buffer of data is collected if
using the non-segmented buffer acquisition mode and storage qualifier type is
continuous.

Trigger In conditions met Trigger In condition has occurred. The Signal Tap Logic Analyzer is waiting for the
condition of the first trigger condition to occur. This can appear if Trigger In is
specified.

Waiting for (Power-up) trigger (1) The Signal Tap Logic Analyzer is now waiting for the trigger event to occur.

Trigger level <x> met The condition of trigger condition x has occurred. The Signal Tap Logic Analyzer is
waiting for the condition specified in condition x + 1 to occur.

Acquiring (power-up) post-
trigger data (1)

The entire trigger event has occurred. The Signal Tap Logic Analyzer is acquiring the
post-trigger data. The amount of post-trigger data collected is you define between
12%, 50%, and 88% when the non-segmented buffer acquisition mode is selected.

Offload acquired (Power-Up) data
(1)

Data is being transmitted to the Intel Quartus Prime software through the JTAG
chain.

Ready to acquire The Signal Tap Logic Analyzer is waiting for you to initialize the analyzer.

1. This message can appear for both Runtime and Power-Up Trigger events. When referring to a Power-Up Trigger, the text in
parentheses is added.

Note: In segmented acquisition mode, pre-trigger and post-trigger do not apply.

14.8 View, Analyze, and Use Captured Data

Use the Signal Tap Logic Analyzer interface to examine the data you captured
manually or using a trigger, and use your findings to debug your design.

When in the Data view, you can use the drag-to-zoom feature by left-clicking to
isolate the data of interest.

14.8.1 Capturing Data Using Segmented Buffers

Segmented Acquisition buffers allow you to perform multiple captures with a separate
trigger condition for each acquisition segment. This feature allows you to capture a
recurring event or sequence of events that span over a long period time efficiently.

Each acquisition segment acts as a non-segmented buffer, continuously capturing data
when it is activated. When you run an analysis with the segmented buffer option
enabled, the Signal Tap Logic Analyzer performs back-to-back data captures for each
acquisition segment within your data buffer. You define the trigger flow, or the type
and order in which the trigger conditions evaluate for each buffer, either in the
Sequential trigger flow control or in the Custom State-based trigger flow control.

The following figure shows a segmented acquisition buffer with four segments
represented as four separate non-segmented buffers.

14 Design Debugging with the Signal Tap Logic Analyzer

QPS5V3 | 2017.11.06

Intel® Quartus® Prime Standard Edition Handbook Volume 3 Verification
386

Figure 208. Segmented Acquisition Buffer

0

1

1

Segment 1 Buffer

1

11
1

1

1

1
1

1 1
1

1

0
00

0

0

0

0 0

0

Trigger 1
Post Pre

0

1

1

Segment 2 Buffer

1

11
1

1

1

1
1

1 1
1

1

0
00

0

0

0

0 0

0

Trigger 2
Post Pre

0

1

1

Segment 3 Buffer

1

11
1

1

1

1
1

1 1
1

1

0
00

0

0

0

0 0

0

Trigger 3
Post Pre

0

1

1

Segment 4 Buffer

1

11
1

1

1

1
1

1 1
1

1

0
00

0

0

0

0 0

0

Trigger 4
Post Pre

The Signal Tap Logic Analyzer finishes an acquisition with a segment, and advances to
the next segment to start a new acquisition. Depending on when a trigger condition
occurs, it may affect the way the data capture appears in the waveform viewer. The
figure illustrates the data capture method. The Trigger markers—Trigger 1, Trigger 2,
Trigger 3 and Trigger 4—refer to the evaluation of the segment_trigger and
trigger commands in the Custom State-based trigger flow. If you use a sequential
flow, the Trigger markers refer to trigger conditions specified within the Setup tab.

If the Segment 1 Buffer is the active segment and Trigger 1 occurs, the Signal Tap
Logic Analyzer starts evaluating Trigger 2 immediately. Data Acquisition for Segment 2
buffer starts when either Segment Buffer 1 finishes its post-fill count, or when Trigger
2 evaluates as TRUE, whichever condition occurs first. Thus, trigger conditions
associated with the next buffer in the data capture sequence can preempt the post-fill
count of the current active buffer. This allows the Signal Tap Logic Analyzer to
accurately capture all the trigger conditions that have occurred. Unused samples
appear as a blank space in the waveform viewer.

The next figure shows an example of a capture using sequential flow control with the
trigger condition for each segment specified as Don’t Care.

Figure 209. Segmented Capture with Preemption of Acquisition Segments

Each segment before the last captures only one sample, because the next trigger
condition immediately preempts capture of the current buffer. The trigger position for
all segments is specified as pre-trigger (10% of the data is before the trigger condition
and 90% of the data is after the trigger position). Because the last segment starts
immediately with the trigger condition, the segment contains only post-trigger data.
The three empty samples in the last segment are left over from the pre-trigger
samples that the Signal Tap Logic Analyzer allocated to the buffer.

For the sequential trigger flow, the Trigger Position option applies to every segment
in the buffer. For maximum flexibility on defining the trigger position, use the custom
state-based trigger flow. By adjusting the trigger position specific to your debugging
requirements, you can help maximize the use of the allocated buffer space.

14.8.2 Differences in Pre-fill Write Behavior Between Different Acquisition
Modes

The Signal Tap Logic Analyzer uses one of the following three modes when writing into
the acquisition memory:

14 Design Debugging with the Signal Tap Logic Analyzer

QPS5V3 | 2017.11.06

Intel® Quartus® Prime Standard Edition Handbook Volume 3 Verification
387

• Non-segmented buffer

• Non-segmented buffer with a storage qualifier

• Segmented buffer

There are subtle differences in the amount of data captured immediately after running
the Signal Tap Logic Analyzer and before any trigger conditions occur. A non-
segmented buffer, running in continuous mode, completely fills the buffer with
sampled data before evaluating any trigger conditions. Thus, a non-segmented
capture without any storage qualification enabled always shows a waveform with a full
buffer's worth of data captured.

Filling the buffer provides you with as much data as possible within the capture
window. The buffer gets pre-filled with data samples prior to evaluating the trigger
condition. As such, Signal Tap requires that the buffer be filled at least once before
any data can be retrieved through the JTAG connection and prevents the buffer from
being dumped during the first acquisition prior to a trigger condition when you
perform a Stop Analysis.

For segmented buffers and non-segmented buffers using any storage qualification
mode, the Signal Tap Logic Analyzer immediately evaluates all trigger conditions while
writing samples into the acquisition memory. This evaluation is especially important
when using any storage qualification on the data set. The logic analyzer may miss a
trigger condition if it waits to capture a full buffer's worth of data before evaluating
any trigger conditions,

If the trigger event occurs on any data sample before the specified amount of pre-
trigger data has occurred, then the Signal Tap Logic Analyzer triggers and begins
filling memory with post-trigger data, regardless of the amount of pre-trigger data you
specify. For example, if you set the trigger position to 50% and set the logic analyzer
to trigger on a processor reset, start the logic analyzer, and then power on your target
system, the logic analyzer triggers. However, the logic analyzer memory is filled only
with post-trigger data, and not any pre-trigger data, because the trigger event, which
has higher precedence than the capture of pre-trigger data, occurred before the pre-
trigger condition was satisfied.

The figures for continuous data capture and conditional data capture show the
difference between a non-segmented buffer in continuous mode and a non-segmented
buffer using a storage qualifier. The configuration of the logic analyzer waveforms
below is a base trigger condition, sample depth of 64 bits, and Post trigger position.

Figure 210. Signal Tap Logic Analyzer Continuous Data Capture

In the continuous data capture, Trig1 occurs several times in the data buffer before
the Signal Tap Logic Analyzer actually triggers. A full buffer's worth of data is captured
before the logic analyzer evaluates any trigger conditions. After the trigger condition
occurs, the logic analyzer continues acquisition until it captures eight additional
samples (12% of the buffer, as defined by the "post-trigger" position).

14 Design Debugging with the Signal Tap Logic Analyzer

QPS5V3 | 2017.11.06

Intel® Quartus® Prime Standard Edition Handbook Volume 3 Verification
388

Figure 211. Signal Tap Logic Analyzer Conditional Data Capture

Note to figure:

1. Conditional capture, storage always enabled, post-fill count.

2. Signal Tap Logic Analyzer capture of a recurring pattern using a non-segmented
buffer in conditional mode. The configuration of the logic analyzer is a basic
trigger condition "Trig1" and sample depth of 64 bits. The Trigger in condition is
Don't care, which means that every sample is captured.

In conditional capture the logic analyzer triggers immediately. As in continuous
capture, the logic analyzer completes the acquisition with eight samples, or 12% of
64, the sample capacity of the acquisition buffer.

14.8.3 Creating Mnemonics for Bit Patterns

The mnemonic table feature allows you to assign a meaningful name to a set of bit
patterns, such as a bus. To create a mnemonic table, right-click in the Setup or Data
tab of an .stp and click Mnemonic Table Setup. You create a mnemonic table by
entering sets of bit patterns and specifying a label to represent each pattern. Once
you have created a mnemonic table, assign the table to a group of signals. To assign a
mnemonic table, right-click on the group, click Bus Display Format and select the
desired mnemonic table.

You use the labels you create in a table in different ways on the Setup and Data tabs.
On the Setup tab, you can create basic triggers with meaningful names by right-
clicking an entry in the Trigger Conditions column and selecting a label from the
table you assigned to the signal group. On the Data tab, if any captured data matches
a bit pattern contained in an assigned mnemonic table, the signal group data is
replaced with the appropriate label, making it easy to see when expected data
patterns occur.

14.8.4 Automatic Mnemonics with a Plug-In

When you use a plug-in to add signals to an .stp, mnemonic tables for the added
signals are automatically created and assigned to the signals defined in the plug-in. To
enable these mnemonic tables manually, right-click the name of the signal or signal
group. On the Bus Display Format shortcut menu, then click the name of the
mnemonic table that matches the plug-in.

As an example, the Nios II plug-in helps you to monitor signal activity for your design
as the code is executed. If you set up the logic analyzer to trigger on a function name
in your Nios II code based on data from an .elf, you can see the function name in
the Instance Address signal group at the trigger sample, along with the
corresponding disassembled code in the Disassembly signal group, as shown in
Figure 13–52. Captured data samples around the trigger are referenced as offset
addresses from the trigger function name.

14 Design Debugging with the Signal Tap Logic Analyzer

QPS5V3 | 2017.11.06

Intel® Quartus® Prime Standard Edition Handbook Volume 3 Verification
389

Figure 212. Data Tab when the Nios II Plug-In is Used

14.8.5 Locating a Node in the Design

When you find the source of an error in your design using the Signal Tap Logic
Analyzer, you can use the node locate feature to locate that signal in many of the tools
found in the Intel Quartus Prime software, as well as in your design files. This lets you
find the source of the problem quickly so you can modify your design to correct the
flaw. To locate a signal from the Signal Tap Logic Analyzer in one of the Intel Quartus
Prime software tools or your design files, right-click the signal in the .stp, and click
Locate in <tool name>.

You can locate a signal from the node list with the following tools:

• Assignment Editor

• Pin Planner

• Timing Closure Floorplan

• Chip Planner

• Resource Property Editor

• Technology Map Viewer

• RTL Viewer

• Design File

14.8.6 Saving Captured Data

When you save a data capture, Signal Tap Logic Analyzer stores this data in the
active .stp file, and the Data Log adds the capture as a log entry under the current
configuration.

When analysis is set to Auto-run mode, the Logic Analyzer creates a separate entry
in the Data Log to store the data captured each time the trigger occurred. This allows
you to review the captured data for each trigger event.

The default name for a log is based time stamp when the Logic Analyzer acquired the
data. As a best practice, rename the data log with a more meaningful name.

The organization of logs is hierarchical; the Logic Analyzer groups similar logs of
captured data in trigger sets.

Related Links

Data Log Pane on page 350

14 Design Debugging with the Signal Tap Logic Analyzer

QPS5V3 | 2017.11.06

Intel® Quartus® Prime Standard Edition Handbook Volume 3 Verification
390

14.8.7 Exporting Captured Data to Other File Formats

You can export captured data to the following file formats, for use with other EDA
simulation tools:

• Comma Separated Values File (.csv)

• Table File (.tbl)

• Value Change Dump File (.vcd)

• Vector Waveform File (.vwf)

• Graphics format files (.jpg, .bmp)

To export the captured data from Signal Tap Logic Analyzer, on the File menu, click
Export and specify the File Name, Export Format, and Clock Period.

14.8.8 Creating a Signal Tap List File

A .stp list file contains all the data the logic analyzer captures for a trigger event, in
text format.

Each row of the list file corresponds to one captured sample in the buffer. Columns
correspond to the value of each of the captured signals or signal groups for that
sample. If you defined a mnemonic table for the captured data, a matching entry from
the table replaces the numerical values in the list.

The .stp list file is especially useful when combined with a plug-in that includes
instruction code disassembly. You can view the order of instruction code execution
during the same time period of the trigger event.

To create a .stp list file in the Intel Quartus Prime software, click File ➤ Create/
Update ➤ Create Signal Tap List File.

Related Links

Adding Signals with a Plug-In on page 337

14.9 Other Features

The Signal Tap Logic Analyzer provides optional features not specific to a task flow.
The following techniques may offer advantages in specific circumstances.

14.9.1 Creating Signal Tap File from Design Instances

In addition to providing GUI support for generation of .stp files, the Intel Quartus
Prime software supports generation of a Signal Tap instance from logic defined in HDL
source files. This technique is helpful to modify runtime configurable trigger
conditions, acquire data, and view acquired data on the data log via Signal Tap
utilities.

14.9.1.1 Creating a .stp File from a Design Instance

To generate a .stp file from parameterized HDL instances within your design:

14 Design Debugging with the Signal Tap Logic Analyzer

QPS5V3 | 2017.11.06

Intel® Quartus® Prime Standard Edition Handbook Volume 3 Verification
391

1. Open or create an Intel Quartus Prime project that includes one or more HDL
instances of the Signal Tap logic analyzer.

2. Click Processing ➤ Start ➤ Start Analysis & Synthesis.

3. Click File ➤ Create/Update ➤ Create Signal Tap File from Design
Instance(s).

4. Specify a location for the .stp file that generates, and click Save.

Figure 213. Create Signal Tap File from Design Instances Dialog Box

Note: If your project contains partial reconfiguration partitions, the Create Signal
Tap File from Design Instance(s) dialog box displays a tree view of the
PR partitions in the project. Select a partition from the view, and click
Create Signal Tap file. The resultant .stp file that generates contains all
HDL instances in the corresponding PR partition. The resultant .stp file
does not include the instances in any nested partial reconfiguration
partition.

Figure 214. Selecting Partition for .stp File Generation

After successful .stp file creation, the Signal Tap Logic Analyzer appears. All the
fields are read-only, except runtime-configurable trigger conditions.

14 Design Debugging with the Signal Tap Logic Analyzer

QPS5V3 | 2017.11.06

Intel® Quartus® Prime Standard Edition Handbook Volume 3 Verification
392

Figure 215. Generated .stp File

Related Links

• Create Signal Tap File from Design Instances
In Intel Quartus Prime Help

• Custom Trigger HDL Object on page 358

14.9.2 Using the Signal Tap MATLAB MEX Function to Capture Data

When you use MATLAB for DSP design, you can acquire data from the Signal Tap Logic
Analyzer directly into a matrix in the MATLAB environment by calling the MATLAB MEX
function alt_signaltap_run, built into the Intel Quartus Prime software. If you use
the MATLAB MEX function in a loop, you can perform as many acquisitions in the same
amount of time as you can when using Signal Tap in the Intel Quartus Prime software
environment.

Note: The Signal Tap MATLAB MEX function is available in the Windows* version and Linux
version of the Intel Quartus Prime software. This function is compatible with MATLAB
Release 14 Original Release Version 7 and later.

To set up the Intel Quartus Prime software and the MATLAB environment to perform
Signal Tap acquisitions:

1. In the Intel Quartus Prime software, create an .stp file.

2. In the node list in the Data tab of the Signal Tap Logic Analyzer Editor, organize
the signals and groups of signals into the order in which you want them to appear
in the MATLAB matrix.

Each column of the imported matrix represents a single Signal Tap acquisition
sample, while each row represents a signal or group of signals in the order you
defined in the Data tab.

14 Design Debugging with the Signal Tap Logic Analyzer

QPS5V3 | 2017.11.06

Intel® Quartus® Prime Standard Edition Handbook Volume 3 Verification
393

http://quartushelp.altera.com/current/#program/ela/ela_com_create_stp_from_mf.htm

Note: Signal groups that the Signal Tap Logic Analyzer acquires and transfers into
the MATLAB MEX function have a width limit of 32 signals. To use the
MATLAB MEX function with a bus or signal group that contains more than 32
signals, split the group into smaller groups that do not exceed the limit.

3. Save the .stp file and compile your design. Program your device and run the
Signal Tap Logic Analyzer to ensure your trigger conditions and signal acquisition
work correctly.

4. In the MATLAB environment, add the Intel Quartus Prime binary directory to your
path with the following command:

addpath <Quartus install directory>\win

You can view the help file for the MEX function by entering the following command
in MATLAB without any operators:

alt_signaltap_run

5. Use the MATLAB MEX function to open the JTAG connection to the device and run
the Signal Tap Logic Analyzer to acquire data. When you finish acquiring data,
close the JTAG connection.

To open the JTAG connection and begin acquiring captured data directly into a
MATLAB matrix called stp, use the following command:

stp = alt_signaltap_run \
('<stp filename>'[,('signed'|'unsigned')[,'<instance names>'[, \
'<signalset name>'[,'<trigger name>']]]]);

When capturing data, you must assign a filename, for example, <stp filename> as
a requirement of the MATLAB MEX function. Other MATLAB MEX function options
are described in the table:

Table 121. Signal Tap MATLAB MEX Function Options

Option Usage Description

signed

unsigned

'signed'

'unsigned'

The signed option turns signal group data into 32-bit two’s-
complement signed integers. The MSB of the group as
defined in the Signal Tap Data tab is the sign bit. The
unsigned option keeps the data as an unsigned integer.
The default is signed.

<instance name> 'auto_signaltap_0' Specify a Signal Tap instance if more than one instance is
defined. The default is the first instance in the .stp,
auto_signaltap_0.

<signal set name>
<trigger name>

'my_signalset'

'my_trigger'

Specify the signal set and trigger from the Signal Tap data
log if multiple configurations are present in the .stp. The
default is the active signal set and trigger in the file.

During data acquisition, you can enable or disable verbose mode to see the status
of the logic analyzer. To enable or disable verbose mode, use the following
commands:

alt_signaltap_run('VERBOSE_ON');-alt_signaltap_run('VERBOSE_OFF');

When you finish acquiring data, close the JTAG connection with the following
command:

alt_signaltap_run('END_CONNECTION');

14 Design Debugging with the Signal Tap Logic Analyzer

QPS5V3 | 2017.11.06

Intel® Quartus® Prime Standard Edition Handbook Volume 3 Verification
394

For more information about the use of MATLAB MEX functions in MATLAB, refer to
the MATLAB Help.

14.9.3 Using Signal Tap in a Lab Environment

You can install a stand-alone version of the Signal Tap Logic Analyzer. This version is
particularly useful in a lab environment in which you do not have a workstation that
meets the requirements for a complete Intel Quartus Prime installation, or if you do
not have a license for a full installation of the Intel Quartus Prime software. The
standalone version of the Signal Tap Logic Analyzer is included with and requires the
Intel Quartus Prime stand-alone Programmer which is available from the Downloads
page of the Altera website.

14.9.4 Remote Debugging Using the Signal Tap Logic Analyzer

14.9.4.1 Debugging Using a Local PC and an SoC

You can use the System Console with Signal Tap Logic Analyzer to remote debug your
Intel FPGA SoC. This method requires one local PC, an existing TCP/IP connection, a
programming device at the remote location, and an Intel FPGA SoC.

Related Links

Remote Hardware Debugging over TCP/IP

14.9.4.2 Debugging Using a Local PC and a Remote PC

You can use the Signal Tap Logic Analyzer to debug a design that is running on a
device attached to a PC in a remote location.

To perform a remote debugging session, you must have the following setup:

• The Intel Quartus Prime software installed on the local PC

• Stand-alone Signal Tap Logic Analyzer or the full version of the Intel Quartus
Prime software installed on the remote PC

• Programming hardware connected to the device on the PCB at the remote location

• TCP/IP protocol connection

14.9.4.2.1 Equipment Setup

1. On the PC in the remote location, install the standalone version of the Signal Tap
Logic Analyzer, included in the Intel Quartus Prime stand-alone Programmer, or
the full version of the Intel Quartus Prime software.

2. Connect the remote computer to Intel programming hardware, such as the or Intel
FPGA Download Cable.

3. On the local PC, install the full version of the Intel Quartus Prime software.

4. Connect the local PC to the remote PC across a LAN with the TCP/IP protocol.

14 Design Debugging with the Signal Tap Logic Analyzer

QPS5V3 | 2017.11.06

Intel® Quartus® Prime Standard Edition Handbook Volume 3 Verification
395

http://www.altera.com
http://www.altera.com/literature/an/an_693.pdf

14.9.5 Using the Signal Tap Logic Analyzer in Devices with Configuration
Bitstream Security

Certain device families support bitstream decryption during configuration using an on-
device AES decryption engine. You can still use the Signal Tap Logic Analyzer to
analyze functional data within the FPGA. However, note that JTAG configuration is not
possible after the security key has been programmed into the device.

Intel FPGA recommends that you use an unencrypted bitstream during the prototype
and debugging phases of the design. Using an unencrypted bitstream allows you to
generate new programming files and reconfigure the device over the JTAG connection
during the debugging cycle.

If you must use the Signal Tap Logic Analyzer with an encrypted bitstream, first
configure the device with an encrypted configuration file using Passive Serial (PS),
Fast Passive Parallel (FPP), or Active Serial (AS) configuration modes. The design must
contain at least one instance of the Signal Tap Logic Analyzer. After the FPGA is
configured with a Signal Tap Logic Analyzer instance in the design, when you open the
Signal Tap Logic Analyzer in the Intel Quartus Prime software, you then scan the chain
and are ready to acquire data with the JTAG connection.

14.9.6 Monitor FPGA Resources Used by the Signal Tap Logic Analyzer

The Signal Tap Logic Analyzer has a built-in resource estimator that calculates the
logic resources and amount of memory that each logic analyzer instance uses.
Furthermore, because the most demanding on-chip resource for the logic analyzer is
memory usage, the resource estimator reports the ratio of total RAM usage in your
design to the total amount of RAM available, given the results of the last compilation.
The resource estimator provides a warning if a potential for a “no-fit” occurs.

You can see resource usage (by instance and total) in the columns of the Instance
Manager pane of the Signal Tap Logic Analyzer Editor. Use this feature when you
know that your design is running low on resources.

The logic element value that the resource usage estimator reports may vary by as
much as 10% from the actual resource usage.

14.10 Design Example: Using Signal Tap Logic Analyzers

The system in this example contains many components, including a Nios processor, a
direct memory access (DMA) controller, on-chip memory, and an interface to external
SDRAM memory. After you press a button, the processor initiates a DMA transfer,
which you analyze using the Signal Tap Logic Analyzer. In this example, the Nios
processor executes a simple C program from on-chip memory and waits for you to
press a button.

Related Links

AN 446: Debugging Nios II Systems with the Signal Tap Embedded Logic Analyzer
application note

14 Design Debugging with the Signal Tap Logic Analyzer

QPS5V3 | 2017.11.06

Intel® Quartus® Prime Standard Edition Handbook Volume 3 Verification
396

http://www.altera.com/literature/an/an446.pdf
http://www.altera.com/literature/an/an446.pdf

14.11 Custom Triggering Flow Application Examples

The custom triggering flow in the Signal Tap Logic Analyzer is most useful for
organizing a number of triggering conditions and for precise control over the
acquisition buffer. This section provides two application examples for defining a
custom triggering flow within the Signal Tap Logic Analyzer. Both examples can be
easily copied and pasted directly into the state machine description box by using the
state display mode All states in one window.

Related Links

On-chip Debugging Design Examples website

14.11.1 Design Example 1: Specifying a Custom Trigger Position

Actions to the acquisition buffer can accept an optional post-count argument. This
post-count argument enables you to define a custom triggering position for each
segment in the acquisition buffer.

The example shows how to apply a trigger position to all segments in the acquisition
buffer. The example describes a triggering flow for an acquisition buffer split into four
segments. If each acquisition segment is 64 samples in depth, the trigger position for
each buffer will be at sample #34. The acquisition stops after all four segments are
filled once.

if (c1 == 3 && condition1)
 trigger 30;
else if (condition1)
begin
 segment_trigger 30;
 increment c1;
end

Each segment acts as a non-segmented buffer that continuously updates the memory
contents with the signal values.

The Data tab displays the last acquisition before stopping the buffer as the last
sample number in the affected segment. The trigger position in the affected segment
is then defined by N – post count fill, where N is the number of samples per
segment.

14 Design Debugging with the Signal Tap Logic Analyzer

QPS5V3 | 2017.11.06

Intel® Quartus® Prime Standard Edition Handbook Volume 3 Verification
397

http://www.altera.com/support/examples/on-chip-debugging/on-chip-debugging.html

Figure 216. Specifying a Custom Trigger Position

0

1

1

11
1

1

1

1
1

1 1
1

1

1

0
00

0

0

0

0 0

0

Trigger

Sample #1

Post Count

Last Sample

14.11.2 Design Example 2: Trigger When triggercond1 Occurs Ten Times
between triggercond2 and triggercond3

The custom trigger flow description is often useful to count a sequence of events
before triggering the acquisition buffer. The example shows such a sample flow. This
example uses three basic triggering conditions configured in the Signal Tap Setup tab.

This example triggers the acquisition buffer when condition1 occurs after
condition3 and occurs ten times prior to condition3. If condition3 occurs prior
to ten repetitions of condition1, the state machine transitions to a permanent wait
state.

state ST1:
if (condition2)
begin
 reset c1;
 goto ST2;
end
State ST2 :
if (condition1)
 increment c1;
else if (condition3 && c1 < 10)
 goto ST3;
else if (condition3 && c1 >= 10)
 trigger;
ST3:
goto ST3;

14 Design Debugging with the Signal Tap Logic Analyzer

QPS5V3 | 2017.11.06

Intel® Quartus® Prime Standard Edition Handbook Volume 3 Verification
398

14.12 Signal Tap Scripting Support

You can run procedures and make settings described in this chapter in a Tcl script. You
can also run some procedures at a command prompt. For detailed information about
scripting command options, refer to the Intel Quartus Prime Command-Line and Tcl
API Help browser. To run the Help browser, type the following at the command
prompt:

quartus_sh --qhelp

Related Links

Tcl Scripting
In Intel Quartus Prime Standard Edition Handbook Volume 2

14.12.1 Signal Tap Tcl Commands

The quartus_stp executable supports a Tcl interface that allows you to capture data
without running the Intel Quartus Prime GUI. You cannot execute Signal Tap Tcl
commands from within the Tcl console in the Intel Quartus Prime software. You must
run them from the command-line with the quartus_stp executable. To execute a Tcl
file that has Signal Tap Logic Analyzer Tcl commands, use the following command:

quartus_stp -t <Tcl file>

Example 38. Continuously capturing data

This excerpt shows commands you can use to continuously capture data. Once the
capture meets trigger condition e, the data is captured and stored in the data log.

Open Signal Tap session
open_session -name stp1.stp

Start acquisition of instances auto_signaltap_0 and
auto_signaltap_1 at the same time

Calling run_multiple_end will start all instances
run_multiple_start

run -instance auto_signaltap_0 -signal_set signal_set_1 -trigger \
trigger_1 -data_log log_1 -timeout 5
run -instance auto_signaltap_1 -signal_set signal_set_1 -trigger \
trigger_1 -data_log log_1 -timeout 5

run_multiple_end

Close Signal Tap session
close_session

Related Links

::quartus::stp
In Intel Quartus Prime Help

14.12.2 Signal Tap Command-Line Options

To compile your design with the Signal Tap Logic Analyzer using the command prompt,
use the quartus_stp command. You can use the following options with the
quartus_stp executable:

14 Design Debugging with the Signal Tap Logic Analyzer

QPS5V3 | 2017.11.06

Intel® Quartus® Prime Standard Edition Handbook Volume 3 Verification
399

https://www.altera.com/documentation/mwh1410471376527.html#mwh1410471013439
http://quartushelp.altera.com/current/index.htm#tafs/tafs/tcl_pkg_stp_ver_1.0.htm

Table 122. quartus_stp Command-Line Options

Option Usage Description

--stp_file <stp_filename> Mandatory Specifies the name of the .stp file.

--enable Optional Creates assignments to the specified .stp in the .qsf
and changes ENABLE_SIGNALTAP to ON. Includes Signal
Tap Logic Analyzer in the next compilation. If no .stp is
specified in the .qsf, the --stp_file option must be
used. If omitted, the compiler uses the current value of
ENABLE_SIGNALTAP in the .qsf file .

--disable Optional Removes the .stp reference from the .qsf and changes
ENABLE_SIGNALTAP to OFF. The Signal Tap Logic
Analyzer is removed from the design database the next
time you compile your design. If the --disable option
is omitted, the current value of ENABLE_SIGNALTAP in
the .qsf is used.

--create_signaltap_hdl_file Optional Creates an .stp representing the Signal Tap instance.
You must use the --stp_file option to create an .stp.
Equivalent to the Create Signal Tap File from Design
Instance(s) command in the Intel Quartus Prime
software.

The first example illustrates how to compile a design with the Signal Tap Logic
Analyzer at the command line.

quartus_stp filtref --stp_file stp1.stp --enable
quartus_map filtref --source=filtref.bdf --family=CYCLONE
quartus_fit filtref --part=EP1C12Q240C6 --fmax=80MHz --tsu=8ns
quartus_asm filtref

The quartus_stp --stp_file stp1.stp --enable command creates the QSF
variable and instructs the Intel Quartus Prime software to compile the stp1.stp file
with your design. The --enable option must be applied for the Signal Tap Logic
Analyzer to compile into your design.

The example below shows how to create a new .stp after building the Signal Tap
Logic Analyzer instance with the IP Catalog.

quartus_stp filtref --create_signaltap_hdl_file --stp_file stp1.stp

Related Links

Command-Line Scripting
In Intel Quartus Prime Standard Edition Handbook Volume 2

14 Design Debugging with the Signal Tap Logic Analyzer

QPS5V3 | 2017.11.06

Intel® Quartus® Prime Standard Edition Handbook Volume 3 Verification
400

https://www.altera.com/documentation/mwh1410471012784.html#mwh1410470998554

14.13 Document Revision History

Table 123. Document Revision History

Date Version Changes Made

2017.11.06 17.1.0 • Clarified information about the Data Log Pane.
• Updated Figure: Data Log and renamed to Simple Data Log.
• Added Figure: Accessing the Advanced Trigger Condition Tab.

2017.05.08 17.0.0 • Added: Open Standalone Signal Tap Logic Analyzer GUI.
• Updated figures on Create Signal Tap File from Design

Instance(s).

2016.10.31 16.1.0 • Added: Create Signal Tap File from Design Instance(s).
• Removed reference to unsupported Talkback feature.

2016.05.03 16.0.0 • Added: Specifying the Pipeline Factor
• Added: Comparison Trigger Conditions

2015.11.02 15.1.0 Changed instances of Quartus II to Intel Quartus Prime.

2015.05.04 15.0.0 Added content for Floating Point Display Format in table: Signal Tap
Logic Analyzer Features and Benefits.

2014.12.15 14.1.0 Updated location of Fitter Settings, Analysis & Synthesis Settings,
and Physical Synthesis Optimizations to Compiler Settings.

December 2014 14.1.0 • Added MAX 10 as supported device.
• Removed Full Incremental Compilation setting and Post-Fit

(Strict) netlist type setting information.
• Removed outdated GUI images from "Using Incremental

Compilation with the Signal Tap Logic Analyzer" section.

June 2014 14.0.0 • DITA conversion.
• Replaced MegaWizard Plug-In Manager and Megafunction

content with IP Catalog and parameter editor content.
• Added flows for custom trigger HDL object, Incremental Route

with Rapid Recompile, and nested groups with Basic OR.
• GUI changes: toolbar, drag to zoom, disable/enable instance,

trigger log time-stamping.

November 2013 13.1.0 Removed HardCopy material. Added section on using cross-
triggering with DS-5 tool and added link to white paper 01198.
Added section on remote debugging an Altera SoC and added link to
application note 693. Updated support for MEX function.

May 2013 13.0.0 • Added recommendation to use the state-based flow for
segmented buffers with separate trigger conditions, information
about Basic OR trigger condition, and hard processor system
(HPS) external triggers.

• Updated “Segmented Buffer” on page 13-17, Conditional Mode
on page 13-21, Creating Basic Trigger Conditions on page 13-16,
and Using External Triggers on page 13-48.

June 2012 12.0.0 Updated Figure 13–5 on page 13–16 and “Adding Signals to the
Signal Tap File” on page 13–10.

November 2011 11.0.1 Template update.
Minor editorial updates.

May 2011 11.0.0 Updated the requirement for the standalone Signal Tap software.

December 2010 10.0.1 Changed to new document template.

continued...

14 Design Debugging with the Signal Tap Logic Analyzer

QPS5V3 | 2017.11.06

Intel® Quartus® Prime Standard Edition Handbook Volume 3 Verification
401

Date Version Changes Made

July 2010 10.0.0 • Add new acquisition buffer content to the “View, Analyze, and
Use Captured Data” section.

• Added script sample for generating hexadecimal CRC values in
programmed devices.

• Created cross references to Intel Quartus Prime Help for
duplicated procedural content.

November 2009 9.1.0 No change to content.

March 2009 9.0.0 • Updated Table 13–1
• Updated “Using Incremental Compilation with the Signal Tap

Logic Analyzer” on page 13–45
• Added new Figure 13–33
• Made minor editorial updates

November 2008 8.1.0 Updated for the Intel Quartus Prime software version 8.1 release:
• Added new section “Using the Storage Qualifier Feature” on

page 14–25
• Added description of start_store and stop_store

commands in section “Trigger Condition Flow Control” on
page 14–36

• Added new section “Runtime Reconfigurable Options” on
page 14–63

May 2008 8.0.0 Updated for the Intel Quartus Prime software version 8.0:
• Added “Debugging Finite State machines” on page 14-24
• Documented various GUI usability enhancements, including

improvements to the resource estimator, the bus find feature,
and the dynamic display updates to the counter and flag
resources in the State-based trigger flow control tab

• Added “Capturing Data Using Segmented Buffers” on page 14–
16

• Added hyperlinks to referenced documents throughout the
chapter

• Minor editorial updates

Related Links

Documentation Archive
For previous versions of the Intel Quartus Prime Handbook, search the
documentation archives.

14 Design Debugging with the Signal Tap Logic Analyzer

QPS5V3 | 2017.11.06

Intel® Quartus® Prime Standard Edition Handbook Volume 3 Verification
402

https://www.altera.com/search-archives

	14 Design Debugging with the Signal Tap Logic Analyzer
	14.1 About the Signal Tap Logic Analyzer
	14.1.1 Hardware and Software Requirements
	14.1.2 Open Standalone Signal Tap Logic Analyzer GUI
	14.1.3 Backward Compatibility with Previous Versions of Intel Quartus Prime Software

	14.2 Signal Tap Logic Analyzer Task Flow Overview
	14.2.1 Add the Signal Tap Logic Analyzer to Your Design
	14.2.2 Configure the Signal Tap Logic Analyzer
	14.2.3 Define Trigger Conditions
	14.2.4 Compile the Design
	14.2.5 Program the Target Device or Devices
	14.2.6 Run the Signal Tap Logic Analyzer
	14.2.7 View, Analyze, and Use Captured Data

	14.3 Configuring the Signal Tap Logic Analyzer
	14.3.1 Assigning an Acquisition Clock
	14.3.2 Adding Signals to the Signal Tap File
	14.3.2.1 About Adding Pre-Synthesis Signals
	14.3.2.2 About Adding Post-Fit Signals
	14.3.2.2.1 Assigning Data Signals Using the Technology Map Viewer

	14.3.2.3 Preserving Signals
	14.3.2.4 Node List Signal Use Options
	14.3.2.4.1 Disabling and Enabling a Signal Tap Instance

	14.3.2.5 Untappable Signals

	14.3.3 Adding Signals with a Plug-In
	14.3.4 Adding Finite State Machine State Encoding Registers
	14.3.4.1 Modify and Restore Mnemonic Tables for State Machines
	14.3.4.2 Additional Considerations for State Machines in Signal Tap

	14.3.5 Specify the Sample Depth
	14.3.6 Capture Data to a Specific RAM Type
	14.3.7 Select the Buffer Acquisition Mode
	14.3.7.1 Non-Segmented Buffer
	14.3.7.2 Segmented Buffer

	14.3.8 Specify the Pipeline Factor
	14.3.9 Using the Storage Qualifier Feature
	14.3.9.1 Input Port Mode
	14.3.9.2 Transitional Mode
	14.3.9.3 Conditional Mode
	14.3.9.4 Start/Stop Mode
	14.3.9.5 State-Based
	14.3.9.6 Showing Data Discontinuities
	14.3.9.7 Disable Storage Qualifier

	14.3.10 Manage Multiple Signal Tap Files and Configurations
	14.3.10.1 Data Log Pane
	14.3.10.2 SOF Manager

	14.4 Defining Triggers
	14.4.1 Basic Trigger Conditions
	14.4.1.1 Using the Basic OR Trigger Condition with Nested Groups

	14.4.2 Comparison Trigger Conditions
	14.4.2.1 Specifying the Comparison Trigger Conditions

	14.4.3 Advanced Trigger Conditions
	14.4.3.1 Examples of Advanced Triggering Expressions

	14.4.4 Custom Trigger HDL Object
	14.4.4.1 Using the Custom Trigger HDL Object
	14.4.4.2 Required Inputs and Outputs of Custom Trigger HDL Module
	14.4.4.3 Properties of Custom Trigger HDL Module

	14.4.5 Trigger Condition Flow Control
	14.4.5.1 Sequential Triggering
	14.4.5.1.1 Configuring the Sequential Triggering Flow

	14.4.5.2 State-Based Triggering
	14.4.5.2.1 State-Based Triggering Flow Tab
	State Diagram Pane
	State Machine Pane
	Resources Pane

	14.4.5.2.2 Trigger Lock Mode

	14.4.5.3 Signal Tap Trigger Flow Description Language
	14.4.5.3.1 <state_label>
	14.4.5.3.2 <boolean_expression>
	14.4.5.3.3 <action_list>
	Resource Manipulation Action
	Buffer Control Actions
	State Transition Action

	14.4.5.4 Using the State-Based Storage Qualifier Feature
	14.4.5.4.1 Storage Qualification Feature for the State-Based Trigger Flow.

	14.4.6 Specify Trigger Position
	14.4.6.1 Post-fill Count

	14.4.7 Create a Power-Up Trigger
	14.4.7.1 Enabling a Power-Up Trigger
	14.4.7.2 Manage and Configure Power-Up and Runtime Trigger Conditions

	14.4.8 External Triggers
	14.4.8.1 Using the Trigger Out of One Analyzer as the Trigger In of Another Analyzer

	14.5 Compiling the Design
	14.5.1 Faster Compilations with Intel Quartus Prime Incremental Compilation
	14.5.1.1 Enabling Incremental Compilation for Your Design
	14.5.1.2 Using Incremental Compilation with the Signal Tap Logic Analyzer

	14.5.2 Prevent Changes Requiring Recompilation
	14.5.3 Incremental Route with Rapid Recompile
	14.5.3.1 Using the Incremental Route Flow
	14.5.3.2 Tips to Achieve Maximum Speedup

	14.5.4 Timing Preservation with the Signal Tap Logic Analyzer
	14.5.5 Performance and Resource Considerations
	14.5.5.1 Signal Tap Logic in Critical Path
	14.5.5.2 Signal Tap Logic Using Critical Resources

	14.6 Program the Target Device or Devices
	14.6.1 Ensure Setting Compatibility Between .stp and .sof Files
	14.6.2 Verify Whether You Need to Recompile Your Project

	14.7 Running the Signal Tap Logic Analyzer
	14.7.1 Runtime Reconfigurable Options
	14.7.2 Signal Tap Status Messages

	14.8 View, Analyze, and Use Captured Data
	14.8.1 Capturing Data Using Segmented Buffers
	14.8.2 Differences in Pre-fill Write Behavior Between Different Acquisition Modes
	14.8.3 Creating Mnemonics for Bit Patterns
	14.8.4 Automatic Mnemonics with a Plug-In
	14.8.5 Locating a Node in the Design
	14.8.6 Saving Captured Data
	14.8.7 Exporting Captured Data to Other File Formats
	14.8.8 Creating a Signal Tap List File

	14.9 Other Features
	14.9.1 Creating Signal Tap File from Design Instances
	14.9.1.1 Creating a .stp File from a Design Instance

	14.9.2 Using the Signal Tap MATLAB MEX Function to Capture Data
	14.9.3 Using Signal Tap in a Lab Environment
	14.9.4 Remote Debugging Using the Signal Tap Logic Analyzer
	14.9.4.1 Debugging Using a Local PC and an SoC
	14.9.4.2 Debugging Using a Local PC and a Remote PC
	14.9.4.2.1 Equipment Setup

	14.9.5 Using the Signal Tap Logic Analyzer in Devices with Configuration Bitstream Security
	14.9.6 Monitor FPGA Resources Used by the Signal Tap Logic Analyzer

	14.10 Design Example: Using Signal Tap Logic Analyzers
	14.11 Custom Triggering Flow Application Examples
	14.11.1 Design Example 1: Specifying a Custom Trigger Position
	14.11.2 Design Example 2: Trigger When triggercond1 Occurs Ten Times between triggercond2 and triggercond3

	14.12 Signal Tap Scripting Support
	14.12.1 Signal Tap Tcl Commands
	14.12.2 Signal Tap Command-Line Options

	14.13 Document Revision History

