
VHDL
Best Practices

Last updated 7/12/19

2 © tjCommon

VHDL Best Practices

• Best Practices ???

• Best practices are often defined by company, toolset or
device

• In our case – Dr. Johnson is setting the “best practices”

• These rules are for Class/Lab purposes. Industry best
practices would include a much more extensive list
• I/O synchronization

• Clock domains

• Revision control

• Test coverage

• …

3 © tjCommon

VHDL Best Practices – page 1/2

• Use meaningful names for blocks, signals and programs
• Use i_xyz for block input names and o_xyz for block

output names
• Use _tb and _de10 name extensions for testbenches

and HW implementations
• 1 design file, instantiate it in the testbench and HW

implementation files
• No latches
• No Clock Gating – Use Enable if Necessary
• Make blocks generic where appropriate
• Use instantiation instead of schematics for hierarchy
• Use explicit port mapping when instantiating

components
• No signal initialization in declarations

4 © tjCommon

VHDL Best Practices – page 2/2

• No variables as signals
• I/O signals are SLV, internal signals are signed/unsigned

as appropriate
• Embed conditional signal assignments in processes
• Use rising_edge()
• Reset_bar for general (control) synchronous logic
• No reset for Data Path FFs and Registers
• Compare to (< 0) or (>= 0)
• Clock divider OK for slowing to human speeds
• If your FSM has more than 10 states – rethink the

problem/solution
• Break FSM designs into separate Next State, Register,

and Output Logic(Mealy) sections

5 © tjCommon

Use meaningful names …

• Use meaningful names for blocks, signals and
programs

Stoplight with emergency detection for lab 22

lab22.vhdl

testbench.vhdl

board.vhdl

stoplight_w_emergency.vhdl

stoplight_w_emergency_tb.vhdl

stoplight_w_emergency_de10.vhdl

Note: primary function followed by
secondary functions

6 © tjCommon

Use i_xyz …

• Use i_xyz for block input names and o_xyz for block
output names

Exception: When using the pin-names from the QSF
file for DE10 implementations, the names must
match exactly

port(i_A: in std_logic_vector(3 downto 0);
i_B: in std_logic_vector(3 downto 0);
i_CIN: in std_logic;
o_SUM: out std_logic_vector(3 downto 0);
o_COUT: out std_logic
);

entity lab_4_de10 is
port(

CLOCK_50 : in std_logic;
SW: in std_logic_vector(9 downto 0);
HEX0: out std_logic_vector(7 downto 0);
HEX1: out std_logic_vector(7 downto 0);
HEX2: out std_logic_vector(7 downto 0);
HEX3: out std_logic_vector(7 downto 0)

);
end entity;

7 © tjCommon

1 design file, instantiate …

• 1 design file, instantiate it in the testbench and HW
implementation files

My_Block.vhdl

My_Block.vhdl
instantiation

My_Block_tb.vhdl

My_Block.vhdl
instantiation

My_Block_de10.vhdl

switches

LEDs

SSEG

Test
Inputs

Output
Checks

No Changes to the design

8 © tjCommon

No Latches

• No Latches

library ieee;
use ieee.std_logic_1164.all;

entity latches is
port(

i_clk: in std_logic;
i_d : in std_logic;

o_q : out std_logic
);

end entity latches;

architecture behavioral of latches is
begin

process(i_clk, i_d)
begin

if(i_clk = '1') then
o_q <= i_d;

end if;
end process;

end architecture;

9 © tjCommon

No Clock Gating

• Our concept of sequential logic requires that all
registers are updated at the same time

• Clock gating introduces delays in some paths and
not in others → possibility of clocks not occurring
at the same time

Register Register Register
Combinational

Logic
Combinational

Logic

clk

Register Register Register
Combinational

Logic
Combinational

Logic

clk Gating
Logic

10 © tjCommon

No Clock Gating – Use Enable

• No Clock Gating – Use Enable if Necessary

• We can “stop” the clock to some registers by using
an enable signal
• Does not provide full power savings

Register

clk

D

EN

11 © tjCommon

Make Blocks Generic

• Make blocks generic whenever possible

library ieee;
use ieee.std_logic_1164.all;

entity registers is
generic(

N: integer := 8
);
port (

i_clk : In std_logic;
i_rstb: in std_logic;
i_D : in std_logic_vector((N - 1) downto 0);

o_Q: out std_logic_vector((N - 1) downto 0)
);

end entity;

architecture behavioral of registers is
begin

process(i_clk, i_rstb)
begin

if (i_rstb = '0') then
o_Q <= (others => '0');

elsif (rising_edge(i_clk)) then
o_Q <= i_D;

end if;
end process;

end behavioral;

generic section added
- defines N
- defaults N to 8
- can be overwritten when instantiated

Vector sizes now defined with N

(others => ‘0’) used since N can change

12 © tjCommon

Use Explicit Port Mapping

• Always use explicit port mapping on component
instantiation architecture structural of dff_instantiation is

component d_ff
port(

i_D : in std_logic;
i_clk : in std_logic;
i_rstb: in std_logic;

o_Q: out std_logic
);

end component;

begin
reg_0: d_ff

port map(i_D => SW(1),
i_clk => CLOCK_50,
i_rstb => SW(0),
o_Q => LEDR(0)

);
end architecture;

component prototype

explicit port mapping
component pin => my signal

port map

library ieee;
use ieee.std_logic_1164.all;

entity dff_instantiation is
port (

CLOCK_50 : in std_logic;
SW : in std_logic_vector(1 downto 0);
LEDR : out std_logic_vector(0 downto 0)

);
end entity;

13 © tjCommon

• No signal initialization in declarations
• It is not typical to implement signal initialization in

hardware

• Rely on reset for any required initialization in hardware

No Signal Initialization

signal foo: std_logic := ‘1’;

14 © tjCommon

• No variables as signals
• We are using HDL code to represent HARDWARE

• Variables do not have a HARDWARE analog

• Variables are treated differently than signals
• Variables are updated immediately in a process

• Signals are only updated at the end of a process

• Variable are appropriate for compile time calculations
• Generate

• Test Benches

No Variables as Signals

15 © tjCommon

• I/O signals are SLV, internal signals are
signed/unsigned as appropriate
• We are using HDL code to represent HARDWARE

• I/O ports are represented by std_logic or std_logic_vectors
• They are interpreted as connections

• Internal signals
• Use std_logic to represent single wires

• Use unsigned to represent unsigned bus signals and structural
buses (memory addresses, …)

• Use signed to represent signed bus signals

I/O signals are …

16 © tjCommon

• Embed conditional signal assignments in processes
• Processes allow for a more structured design

• Processes allow the use of more flexible constructs
• if-else

• case

• Basic forms of If-else and Case statements create the
same RTL as When-else and With-select

• Simple signal assignments do not need to be placed in a
process
• A <= (B or C);

Embed conditional signal …

17 © tjCommon

• Use Rising_Edge()
• (rising_edge(clk)) instead of (clk’event and clk = ‘1’) in

register (FF designs)

• Also use (falling_edge(clk))

• These do better multi-state checking in simulation

clk’event includes things like

Z → 1

U → 1

rising_edge only includes 0 → 1

Use Rising_Edge()

process(i_clk, i_rstb)
begin

if (i_rstb = '0') then
o_Q <= '0';

elsif (rising_edge(i_clk)) then
o_Q <= i_D;

end if;
end process;

18 © tjCommon

Reset_bar for general …

• Reset_bar for general (control) synchronous logic
• All non-data path registers will have a rstb signal

library ieee;
use ieee.std_logic_1164.all;

entity registers is
generic(

N: integer := 8
);
port (

i_clk : in std_logic;
i_rstb: in std_logic;
i_D : in std_logic_vector((N - 1) downto 0);

o_Q: out std_logic_vector((N - 1) downto 0)
);

end entity;

architecture behavioral of registers is
begin

process(i_clk, i_rstb)
begin

if (i_rstb = '0') then
o_Q <= (others => '0');

elsif (rising_edge(i_clk)) then
o_Q <= i_D;

end if;
end process;

end behavioral;

library ieee;
use ieee.std_logic_1164.all;

entity d_ff is
port (

i_clk : in std_logic;
i_rstb:in std_logic;
i_D : in std_logic;

o_Q: out std_logic
);

end entity;

architecture behavioral of d_ff is
begin

process(i_clk, i_rstb)
begin

if (i_rstb = '0') then
o_Q <= '0';

elsif (rising_edge(i_clk)) then
o_Q <= i_D;

end if;
end process;

end behavioral;

19 © tjCommon

Compare to (< 0) or (>= 0)

• Compare to (< 0) or (>= 0)
• These comparisons only require checking the MSB

