* Basic Types

IS

indirect - comparisons

boolean enumerated
bit enumerated
character enumerated

severity level enumerated

integer integer

natural integer (subtype)
positive integer (subtype)
real floating point
time physical
bit_vector array of bit

string array of character

Common — last updated 8/20/19

< < < Z < <

P

not recommended
not recommended
simulation

array indices,

compile time calculation,
simulation

compile time calculation,
simulation

simulation

not recommended

simulation (file read/write)

© tj

* Synthesis Types —std _logic 1164
* 4 types

* std_ulogic e std logic —resolved® version of std_ulogic

e std_ulogic_vector e std logic vector — resolved™ version of std_ulogic_vector

* 9 metalogical values

* Resolved : allows high

U un-initialized N impedance signals to

X Forcing Unknown N “resolve” toa 1 or O, ie.
‘o Forcing 0 Y have multiple drivers
‘1 Forcing 1 Y
7 High Impedance Y
‘W’ Weak Unknown N
v Weak 0 N ** Comparison of
‘H Weak 1 N std_logic_vectors can
o Don't Care N return unexpected results
* Operators
e Comparison**: =, /=, <, <=, >, >= e Shifting: srl, sll, rol, ror
* Boolean: not, and, or, nand, nor, xor, xnor e Concatenation: &

Common — last updated 8/20/19 2 © tj

* Numeric Types — numeric_std
* 2 types

* signed array of std logic (analogous to a std_logic_vector)

* unsigned array of std_logic (analogous to a std_logic_vector)

Values
e signed is interpreted as 2’s complement (positive and negative)

* unsigned is interpreted as unsigned magnitude (always positive)

* Operators
 Comparison: =, /=, <, <=, >, >= e Shifting: srl, sll, rol, ror
* Boolean: not™, and, or, nand, nor, xor, xnor e Concatenation: &
* Arithmetic’: sign -"™"7, abs™, +, -, ¥ /T ‘mod, rem, **T1T
* Functions
* resize resize unsigned using zero extension

resize signed using sign extension

" Arithmetic operators other than multiplication preserve the length of the result vector i.e. wrap
™ negation of 2’s complement most negative value will return the most negative value
™ *and / will create large logical solutions

T signed only
T+t

Common — last u&ﬁlt\éajé?z\ﬁl/im a base of 2 3 © tj

* Fixed Point Types — fixed pkg

2 types

 sfixed arrayof std_logic
 ufixed array of std_logic

Values

» sfixed is interpreted as 2’s complement fixed point number (positive and negative)
* unsigned is interpreted as unsigned magnitude fixed point number (always positive)

Operators

Positive indices represent the integer portion of the number
Negative indices represent the fractional portion of the number
signal foo: sfixed(7 downto -8);

msb

1

0 =1 |8-2

Isb

* Comparison: =, /=, <, <=, >, >=
* Boolean: not, and, or, nand, nor, xor, xnor

* Arithmetic: *: sign

Functions
* resize

* is_negative
e add carry
e scalb

* is_negative

°* maximum, minimum

* saturate

Common — last updated 8/20/19

T+t T+t kTt T+t
4 ’) +7 D ’ /

abs , mod, rem

resize unsigned using zero extension
resize signed using sign extension
determines if the value is less than 0
create a carry out during addition

scales the value by a factor of two (shift)
determines if the value is less than 0

LRRE S

Tttt

and / will create large logical solutions

signed only

provides the largest or smallest of two values

provides the largest possible value for the given range

4

© tj

* Floating Point Types — float_pkg

* 1type
 float arrayof std_logic
e 3 sub types
* float32 float(8 downto -23)
* floate4 float(11 downto -52)
* float128 float(15 downto-112)

Float 32 format is:
sign 8 bit exponent 23 bit mantissa

mantissa is normalized to 1. xxx and the 1. removed

exponent is biased by 127
mantissa and exponent are unsigned
Value = (-1*sign)*1.mantissa x 2(exponent-127)

» Overflow/Underflow/Rounding/Errors
 Complicated set of rules to deal with these

* Details are in the spec
* Operators
e Comparison: =, /=, <, <=, >, >=
* Boolean: not, and, or, nand, nor, xor, xnor
e Arithmetic: : sign -, abs, +, -, *, /, mod, rem
* Functions

e operator functions - Comparison and Arithmetic operations have corresponding functions

with special modes
* resize functions
 utility functions
* type conversions
e constants

Common — last updated 8/20/19 5

© tj

