Last updated 10/29/20




* These slides introduce enumerated types

* Upon completion: You should be able interpret and
code using enumerated types

EE 1910 P © tj



* C Types

Derived

Function Array Pointer Structure Union Enumerated

EE 1910 3 © tj



EE 1910

e Typedef

* Define a new Type

* Inherits members and operations from a standard or
previously defined derived type

e Typically done in global area so all parts of the program
will recognize it

typedef type IDENTIFIER;

typedef int AGE; // define a new type called AGE
// that acts like an int

4 ©tj



* Enum

e Assign a limited number of values(words) to a variable
* Define its name and its members (enumerate them)

* Members are mapped to integer values
* NormallyO-n

enum typeName {idenitifier list};

enum wireColor {RED, BLUE, BLACK, WHITE};

wireColor recognizes the words RED, ... WHITE as values

RED is mapped to 0, WHITE is mapped to 3

EE 1910 5 © tj



EE 1910

e 2 ways to create enumerated variables

* |dentify each variable as an enum variable

enum wireColor {RED, BLUE, BLACK, WHITE}; // definition
enum wireColor power; // declaration
enum wireColor gnd;

enum wireColor signal;

* Create a new type that is an enum type

typedef enum {RED, BLUE, BLACK, WHITE} wireColor;
wireColor power; // declaration
wireColor gnd;

wireColor signal;

6 Ot



EE 1910

 Assign/Use Values

power = BLACK;
gnd = WHITE;
signal = RED;

if(power == RED){

© tj



EE 1910

* Operations

* Enumerated types are stored as integers

* All integer operations can be applied to an enumerated
type
* No checking is done to ensure the result is valid

oML 2 10 11
typedef enum {JAN, FEB, MAR, ... NOV, DEC} month;
month birthMonth:; // create a variable of

// type month

if ((birthMonth — 2) >= MAY){

8 Ot



EE 1910

* Operations

i ol I 2 10M %4
enum month {JAN, FEB, MAR, NOV, DEC};

enum month birthMonth;
enum month currentMonth;

if (birthMonth > currentMonth){
switch(currentMonth){
case JAN: // case O

case FEB: // case 1

Ot



* Change of Reference
0 1 2 10 11
enum month {JAN, FEB, MAR, NOV, DEC};

* suppose we’'d like the member numbers to match some
other pattern

1 2 3 Mivpy 27
enum month {JAN=1, FEB, MAR, ... OCT=20,NOV, DEC};

EE 1910 10 © tj



EE 1910

* Anonymous Enumeration
* Same effect as a #define
but
* Subject to scope rules

enum {OFF, ON}; // assign OFF the value 0, ON: 1

enum {SPACE =, COMMA =9, COLON = “"};

11

Ot



EE 1910

e Scope Considerations

* Generally, we would like our enum or enum type to be visible
anywhere in our file (main and all functions)

* Place enum or typedef in the global regions

. Sulbsequent variable declarations are subject to normal scope
rules

#include <stdio.h>
enum wireColor {RED, BLUE, BLACK, WHITE};
typedef enum {Jan=1, Feb, ...} month;

int main(void){

enum wireColor power;
month bday;

12

Ot



e type in
& program

typedef enum {Jan

int main{void){

gnd = WHITE;
VCC = BLACK;
sig = RED;

birth_month

printf({"gnd
printf{"vcc
printf{"sig

else

enum wire_color {RED

50 all parts

m

are
& them
WHITE, BLUE, BLACK};

FER, MAR, APR, MAY,

3
=1,

/! has to be after the
vold print_month({menth the_month);

'} declare v
enum wire_color gnd;
enum wire_color vec;
enum wire_color sig;
month birth_

'/ 1nitializ

setbuf(stdout, MULL);

ariables

month;

e varlables

value is Xiwn", gnd};
value 1s %iwn™, wcc);
value 1s %iwn™, sig);

if{vcc == BLACK)
printf{"vce is blackin™};

"y

printf{"vce is not black\.n™);

typedef - otherwise

JUN, JUL, AUS, SER,

ocT, MoV, DECY monthj

not recognized

printf("birth month is %i\n", birth_menth};

birth_monthes;
printf("birth month is %i\n", birth_menth};

if(birth_menth > APR)
printf("birth menth is after aprilin™);
else
printf("birth month is before or equal to aprilin®™);

birth_month -= 3;
printf("birth month is %i\n", birth_month};

print_month({birth_month};

birth_month = birth_month << 3;
printf("birth month is %i\n", birth_month);

’//,/print_month(birth_month:;

void print_month({month the_month){

return 8;
end main

/¢ create an array to allow names to be printed
const char* menth_name[] = {"err™, "jan", "feb", "mar®, "apr",
printf("birth month is Xs\n", month_name[the_month]};

return;

/¢ end print_month

<terminated= (exit value: 0 Cla

gnd value is 1
vee value is 3
sig value is @
voo is black

"may”, "jun”,

birth month is 7

birth month is 8

birth month is after april

birth month is ©

birth month is may

birth month is 48

birth month is

| <y

“jul®, "gug", "sep”, "¢ct”, "nov", "dec”};

random luck that

EE 1910

13

this is null, outside the
string array bounds

Ot



