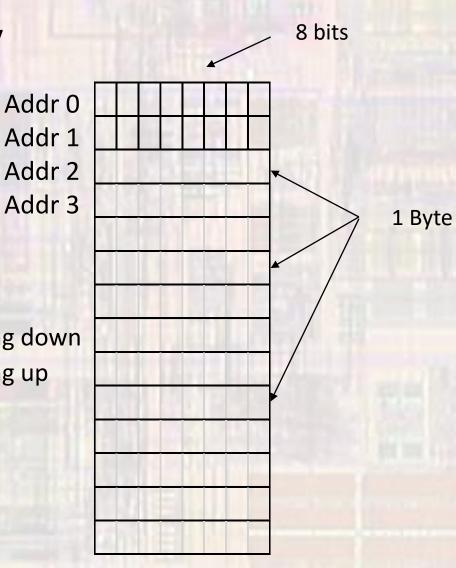
Memory Overview

Last updated 7/1/21

Many Types of memory


- Paper tape
- Cards
- Magnetic Tape
- Floppy Disk
- Hard Drive (Magnetic)
- Optical Drive
- Integrated Circuit Memory

- 2 Key Concepts for Integrated Circuit memory
 - ROM
 - ROM read only memory
 - fixed values memory cannot be changed
 - RAM
 - RAM random access (really R/W)
 - memory can be changed

- Integrated Circuit Memory
 - Non Volatile
 - Retains it's values even when power is removed
 - ROM
 - NAND and NOR Flash
 - EPROM, EEPROM
 - Volatile
 - Loses its values when power is removed
 - Static Retains value without any extra effort
 - Registers
 - SRAM Static RAM
 - Dynamic Requires periodic refresh or values will degrade
 - DRAM Dynamic RAM
 - SDRAM Synchronous DRAM (DDR, DDR2, DDR3, DDR4, ...)

- Integrated Circuit Memory
 - Minimum logical element
 - 1 bit (b)
 - Has a logical value of '0' or '1'
 - Has a physical value of "vdd" or "gnd"
 - 5v, 3.3v, <mark>2.4v, 1.8v, 1.2v</mark>
 - Minimum accessible storage element
 - 1- Byte (B)
 - 8 bits
 - Minimum Addressable element
 - 1 Word
 - Situational dependent length
 - 1B, 2B, 4B, 8B, 16B, ...

- Integrated Circuit Memory
 - Logical configuration
 - Long column of bytes
 - 1st address is "0"
 - Sometimes thought of as growing down
 - Sometimes thought of as growing up

Integrated Circuit Memory

- Even though we may not have stored anything in a specific memory location
- It has a value
- the value is likely random

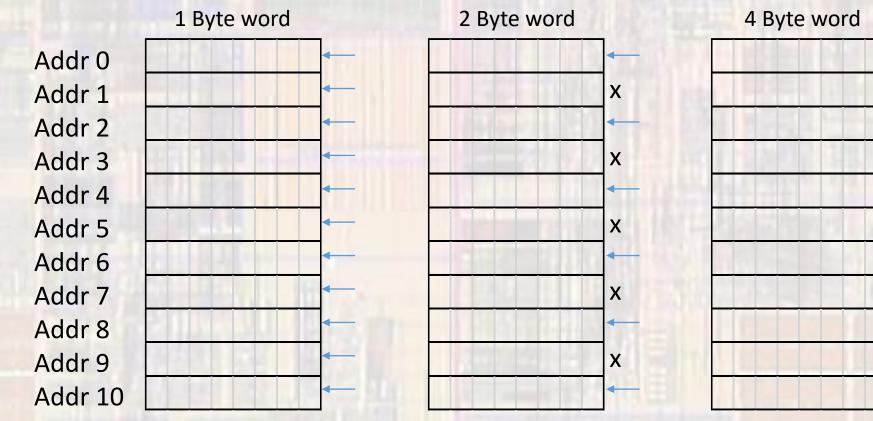
ry							•	_	/	8 bits	
	Addr 0	1	1	0	1	1	0	1	1		
	Addr 1	0	1	1	0	0	0	0	0		
	Addr 2	0	1	0	0	1	1	0	1,		
	Addr 3	0	1	0	1	0	1	1	1		4.0.1
		1	1	0	0	0	1	0	0	1	1 Byte
		1	0	0	0	1	0	0	1		
		1	0	1	0	1	1	1	1		
		1	1	1	0	1	0	1	0	/	
		0	1	0	0	0	0	1	0	/	
		0	0	1	1	0	1	1	0	!	
		0	0	1	1	0	1	1	1		
		1	0	1	0	1	1	1	0		
		1	1	1	0	1	1	0	0		
		1	0	1	1	1	0	1	0		

- Integrated Circuit Memory
 - Write
 - Provide Address and Data
 - Write (addr 3, 01100110)
 - Write (addr 7, 11010000)
 - Write (addr 9, 0000000)
 - Note: Writing overwrites existing data

Addr 0								
Addr 1				2	F	5		
Addr 2								
Addr 3	0	1	1	0	0	1	1	0
						2		
	1	1	0	1	0	0	0	0
lata	0	0	0	0	0	0	0	0
					_			
		1						

- Integrated Circuit Memory
 - Read
 - Provide Address
 - Read (addr 3) → 01100110
 - Read (addr 7) → 11010000
 - Read (addr 8) → ????????
 - NOTE: Reading does not destroy the data

Addr 0 Addr 1 Addr 2 Addr 3	0	1	1	0	0	1	1	0
ne data			0					


- Integrated Circuit Memory
 - Addresses
 - Addresses are NOT part of the memory array
 - Addresses are logic circuits to choose which part of the array to read from or write to – decoders determine the location

Addr 0 Addr 1								
Addr 2 Addr 3	0	1	1	0	0	1	1	0
	1	1	0	1	0	0	0	0
	0	0	0	0	0	0	0	0

- Integrated Circuit Memory
 - Word Alignment
 - Processors work with data WORDS
 - Size of the internal registers
 - 1 Byte 8 bit processor
 - 2 Bytes 16 bit processor
 - 4 Bytes 32 bit processor
 - 8 Bytes 64 bit processor
 - Memory is word aligned
 - Must access the entire word
 - Not allowed/possible to access inside a word*

* exceptions exist

- Integrated Circuit Memory
 - Word Alignment
 - Allowed addresses indicated by

12

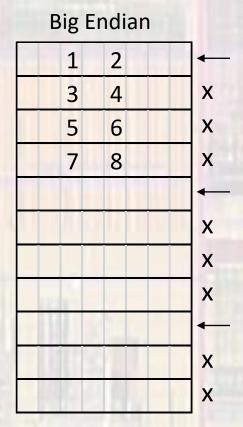
X

X

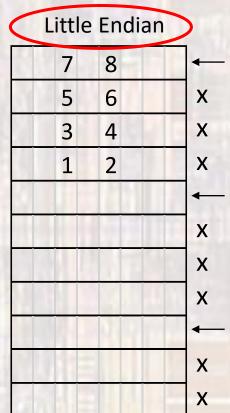
X

X

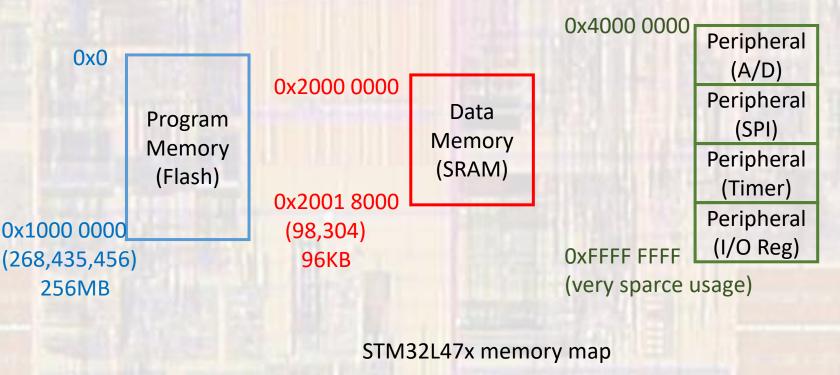
X

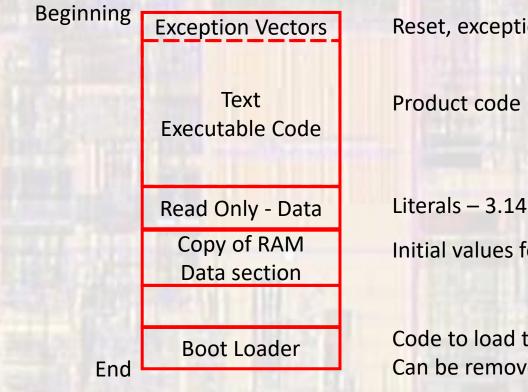

Х

Х


Х

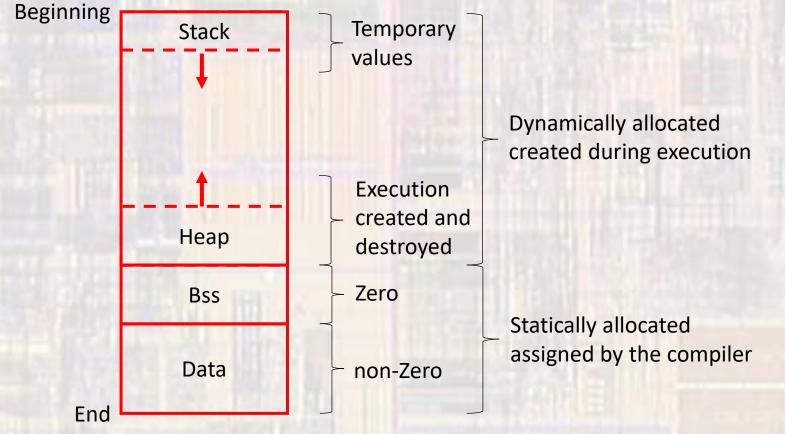
- Integrated Circuit Memory
 - Big-Endian vs Little-Endian
 - data value 0x12345678 in a 4 byte word


Addr 0 Addr 1 Addr 2 Addr 3 Addr 4 Addr 5 Addr 6 Addr 7 Addr 8 Addr 9 Addr 10

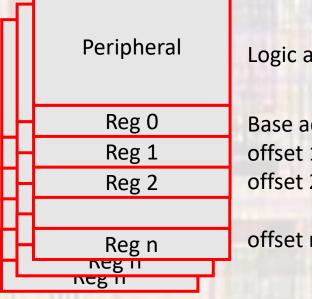

13

- Memory Mapped Architecture (embedded)
 - Treat memories and peripherals the same
 - Assign separate memory "spaces" to each type of storage
 - Some architectures include registers in memory map

- Program Memory (embedded)
 - Flash
 - Accessible Double Word format


Reset, exception, and interrupt actions

Literals – 3.14159, 1.414, ...


Initial values for variables

Code to load the remainder of flash Can be removed for additional space in production

- Data Memory (embedded)
 - Accessible in Byte, Half-Word, and Word format
 - Has some Bit level access

- Peripheral Memory (embedded)
 - 4 Bytes (Word) accesses

Logic and other Hardware

Base address (offset 0) offset 1 offset 2

offset n