
More Pointers

Last updated 10/29/20

2 © tjEE 1910

More Pointers

• These slides discuss pointers and arrays

• Upon completion: You should be able interpret and
code using array pointers

3 © tjEE 1910

More Pointers

• Pointer Review

• Declaration
int* myIntPtr; // define a ptr to a variable of type int

• Definition
myIntPtr = &foo; // set myIntPtr to the address of foo

• Dereference
boo = *myIntPtr; // boo equals value in memory

// location pointed to by

// myIntPtr

4 © tjEE 1910

More Pointers

• Pointer Review

• Passing an address to a function
func1(foo, &boo); // pass the value of foo to the fn

// pass the address of boo to the fn

• Expect an address in a function
void func1(int soo, int* zoo){

// read an int and call it soo locally
// read a pointer (address) to a
// variable of type int and call it
// zoo locally

• Use an address in a function
*zoo += soo; // add the value pointed to by the

// pointer zoo to the value of soo
// and put it back into the value
// of the variable pointed to by zoo

5 © tjEE 1910

More Pointers

• Pointers in memory

int* foo;
int* boo;
int* soo;

foo = &myVar1;
boo = &myVar2;
soo = &myVar1;

*foo = 12;
*boo = 6;
*soo = 0;

myVar1 =
myVar2 =
myVar3 =

4 Byte word

x
x
x

x
x
x

x
x
x

0x2000 0020

0x2000 0024

0x2000 0028

6 © tjEE 1910

More Pointers

• Pointers in memory

int* foo;
int* boo;
int* soo;

foo = &myVar1;
boo = &myVar2;
soo = &myVar1;

*foo = 12;
*boo = 6;
*soo = 0;

myVar1 = 0
myVar2 = 6
myVar3 = ?

4 Byte word

x
x
x

x
x
x

x
x
x

0x2000 0020

0x2000 0024

0x2000 0028

12 0

6

7 © tjEE 1910

More Pointers

• Pointer Arithmetic
• Pointers have a type

• The type can be used to allow pointer arithmetic
• Addition and subtraction of pointers is done in increments of

the “type” size.

• E.g. ints→ 4Bytes, chars → 1Byte

• The allowed operations on pointers are: +, -, ++, --

int* foo;

int* soo;

foo = &boo; // assume boo is located at 0x1000 with value 25

soo = foo + 2; // soo now has the value 0x1008

foo++; // foo now has the value 0x1004

loo = *(soo – 2); // loo now equals 25

8 © tjEE 1910

More Pointers

• Pointers and Arrays
• Reminder: the name of an array is actually a pointer to

the 0th element of the array

int myArray[]; // myArray holds the value 0x1000 (ptr)

myArray + 2 evaluates to 0x1008 (ptr arithmetic)

*(myArray + n) is equivalent to myArray[n]

pointer arithmetic

9 © tjEE 1910

More Pointers

• Pointers and Arrays

int Student[5];
int* myPtrA;
int* myPtrB;
int* myPtrC;

myPtrA = &Student[2];

myPtrB = &Student[1] + 1;

myPtrC = Student

*myPtrA
*myPtrB
*(myPtrC + 2)
*(Student + 2)

2

3

4

7

6

Student
0x1000

0x1004

0x1008

0x100C

0x1010

0x1014

0x1018

Addr

5

0

10 © tjEE 1910

More Pointers

• Pointers and Arrays

int Student[5];
int* myPtrA;
int* myPtrB;
int* myPtrC;

myPtrA = &Student[2];

myPtrB = &Student[1] + 1;

myPtrC = Student + 4;

*myPtrA 4
*myPtrB 4
*(myPtrC - 2) 4
*(Student + 2) 4

2

3

4

7

6

Student[0]
0x1000

0x1004

0x1008

0x100C

0x1010

0x1014

0x1018

Addr

5

0

1008

1004 + 4

1008

1008

1000 + 10 (hex)1010

11 © tjEE 1910

More Pointers

• Pointers and Arrays

// Local variables

int myArray[10] = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10};

// print array

int i;

for(i = 0; i < 10; i = i + 1){

printf("array val: %i %p: \n", *(myArray + i), myArray + i);

}

12 © tjEE 1910

More Pointers

• Pointers and Arrays

// Local variables

double myArray2[10] = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10};

// print array

int i;

for(i = 0; i < 10; i = i + 1){

printf("array val: %f %p: \n", *(myArray2 + i), myArray2 + i);

}

13 © tjEE 1910

More Pointers

• Pointers and Arrays

// Local variables

char myArray3[10] = {49, 50, 51, 52, 53, 54, 55, 56, 57, 58 };

// print array

int i;

for(i = 0; i < 10; i = i + 1){

printf("array val: %c %p: \n", *(myArray3 + i), myArray3 + i);

}

14 © tjEE 1910

More Pointers

• Pointers and Arrays
• The pointer terminology can replace our array

terminology

