
Common Operators

Last updated 8/20/20

2 © tjEE 1910

Operators

• These slides introduce C operators

• Upon completion: You should be able interpret and
code using these operators

3 © tjEE 1910

Operators

Precedence Operator Description Associativity

1

++ -- Suffix/postfix increment and decrement Left-to-right

() Function call

[] Array subscripting

. Structure and union member access

-> Structure and union member access through pointer

(type){list} Compound literal(C99)

2

++ -- Prefix increment and decrement Right-to-left

+ - Unary plus and minus

! ~ Logical NOT and bitwise NOT

(type) Type cast

* Indirection (dereference)

& Address-of

sizeof Size-of

_Alignof Alignment requirement(C11)

Precedence Operator Description Associativity

1

++ -- Suffix/postfix increment and decrement Left-to-right

() Function call

[] Array subscripting

. Structure and union member access

-> Structure and union member access through pointer

(type){list} Compound literal(C99)

2

++ -- Prefix increment and decrement Right-to-left

+ - Unary plus and minus

! ~ Logical NOT and bitwise NOT

(type) Type cast

* Indirection (dereference)

& Address-of

sizeof Size-of

_Alignof Alignment requirement(C11)

3 * / % Multiplication, division, and remainder Left-to-right

4 + - Addition and subtraction

5 << >> Bitwise left shift and right shift

6
< <= For relational operators < and ≤ respectively

> >= For relational operators > and ≥ respectively

7 == != For relational = and ≠ respectively

8 & Bitwise AND

9 ^ Bitwise XOR (exclusive or)

10 | Bitwise OR (inclusive or)

11 && Logical AND

12 || Logical OR

13 ?: Ternary conditional Right-to-Left

14

= Simple assignment

+= -= Assignment by sum and difference

*= /= %= Assignment by product, quotient, and remainder

<<= >>= Assignment by bitwise left shift and right shift

&= ^= |= Assignment by bitwise AND, XOR, and OR

15 , Comma Left-to-right

4 © tjEE 1910

Operators

• Special note on binary numbers in C programming

• Some but not all compilers allow binary numbers to be
represented in C code directly

95 → 0b01011101

• To be safe and ensure our code is portables we will NOT
use this notation.

• Binary numbers can be represented with:
• Their decimal equivalents 95

• Their hexadecimal equivalents 0x5D

5 © tjEE 1910

Common Operators

• Basic Math
• +, - addition and subtraction

• c = a + b; c = 18

• *, / multiplication and division
• c = a * b; c = 65

• z = x / y; z = 2.53

• c = a / b; c = 2 Integer division results in only the whole part

• % modulo
• c = a % b; c = 3 modulo returns the remainder from dividing

• Not defined for anything but integers

int a;
int b;
int c;
a = 13;
b = 5;

float x;
float y;
float z;
x = 5.566;
y = 2.2;

6 © tjEE 1910

Common Operators

• Relational Operators

• ==, <, >, <=, >=, !=
• equals, LT, GT, LE, GE, not equal

• evaluates to Boolean T or F

• true == true → true

• a == b → false

• c == a + b → true

• x >= y → true

• x <= y → false

• b < 5 → false

• y != 2.2 → false

int a;
int b;
int c;
a = 13;
b = 5;
c = 18

float x;
float y;
float z;
x = 5.566;
y = 2.2;

7 © tjEE 1910

Common Operators

• Logical Operators

• ! logical not
• inverts the logical value
• !true → false
• !b → false

• || logical OR
• evaluates both sides logically then does an OR
• true || false → true
• c || 0 → false
• c || b → true

• && logical AND
• evaluates both sides logically then does an AND
• true && true → true
• c && b → false
• x && y → true

Reminder: The ONLY integer value
that is false is 0

int a;
int b;
int c;
a = 13;
b = 5;
c = 0

float x;
float y;
float z;
x = 5.566;
y = 2.2;

8 © tjEE 1910

Common Operators

• Bitwise Operators
• ~ bitwise not

• inverts the individual bits in a number
• This is NOT the 2’s complement

• ~a→ ~(1000 0110) → 0111 1001 → 0x79
• ~c→ ~(1101 1101) → 0010 0010 → 34

• | bitwise or
• ORs the individual bits
• a | b → (1000 0110) | (1010 0101) → 1010 0111 → 0xA7

• & bitwise and
• ANDs the individual bits
• a & b → (1000 0110) & (1010 0101) → 1000 0100 → 0x84

• ^ bitwise xor
• XORs the individual bits
• a ^ b → (1000 0110) ^ (1010 0101) → 0010 0011 → 0x23

int_8 a;
int_8 b;
int_8 c;
a = 0x86;
b = 0xA5;
c = -35

9 © tjEE 1910

Common Operators

• Bitwise Operators

• >> bitwise shift right
• shifts the individual bits in a number to the right

• Uses sign extension to fill in the bits

• a >> 2 → (1010 0110) >> 2 → 0010 1001 - unsigned

OR

• b >> 2 → (1010 0110) >> 2 → 1110 1001 - signed

• << bitwise shift left
• shifts the individual bits in a number to the left

• Fills the bits with 0

• a << 3 → (1010 0110) << 3 → 0011 0000 - unsigned

OR

• b << 3 → (1010 0110) << 3 → 0011 0000 - signed

uint_8 a;

int_8 b;

a = 0xA6;
b = 0xA6;

10 © tjEE 1910

Common Operators

• Assignment

• = assignment
• variable = expression

• Has both a value - result of right side

• And a side effect – places value into the variable on the left
side

• c = a + b; → c assigned the value 30

• Compound variations
*=, /=, +=, -=, %=

a *= b → a = a * b

a += 10 → a = a + 10

a -= b + c → a = a – (b + c) note: whole right side evaluated first

int a;
int b;
int c;
a = 10;
b = 20;

11 © tjEE 1910

Common Operators

• Pre/Post Fix

• ++ increment

• -- decrement

• The operation of these operators is covered in the
expressions notes

