Last updated 8/20/20

* These slides introduce C operators

* Upon completion: You should be able interpret and
code using these operators

EE 1910 2 © tj

EE 19

Precedence

(-]

10
11
12
13

14

15

Operator
++ --

()
1

->
(type){list}
++ -

+ -

! ~

(type)

*

&

sizeof
_Alignof

* [9%

+ -

Description

Suffix/postfix increment and decrement
Function call

Array subscripting

Structure and union member access
Structure and union member access through pointer
Compound literal(C99)

Prefix increment and decrement

Unary plus and minus

Logical NOT and bitwise NOT

Type cast

Indirection (dereference)

Address-of

Size-of

Alignment requirement(C11)

Multiplication, division, and remainder
Addition and subtraction

Bitwise left shift and right shift

For relational operators < and < respectively
For relational operators > and 2 respectively
For relational = and # respectively

Bitwise AND

Bitwise XOR (exclusive or)

Bitwise OR (inclusive or)

Logical AND

Logical OR

Ternary conditional

Simple assignment

Assignment by sum and difference
Assignment by product, quotient, and remainder
Assignment by bitwise left shift and right shift
Assignment by bitwise AND, XOR, and OR
Comma

Associativity
Left-to-right

Right-to-left

Left-to-right

Right-to-Left

Left-to-right © tj

* Special note on binary numbers in C programming

e Some but not all compilers allow binary numbers to be
represented in C code directly

95 - 0b01011101

* To be safe and ensure our code is portables we will NOT
use this notation.

* Binary numbers can be represented with:
* Their decimal equivalents 95
* Their hexadecimal equivalents 0x5D

EE 1910 4 © tj

a=13; | | x=5.566;

* Basic Math b=5 | |y=22
* + - addition and subtraction
* c=a+b; c=18

e * / multiplication and division

e c=a*hb; c=65

e z=x/vy; z=2.53

* C=a / b; Ch=2 Integer division results in only the whole part
* % modulo

e c=a%hb; c=3 modulo returns the remainder from dividing

* Not defined for anything but integers

EE 1910 5 © tj

EE 1910

* Relational Operators

o — =
’

3o e
equals, LT, GT, LE, GE, not equal
evaluates to Boolean Tor F

true ==true = true

aN=e - false
c==a+b - true
X>=y - true
X<=vy - false
b<5 - false
yl=2.2 - false

a=13;
b=05;
c=18

X = 5.566;
y=2.2;

© tj

int a;
int b;

int c; float z;
. a=13; X =5.566;
* Logical Operators b =5, y=2.2:
c=0

e |logical not
* inverts the logical value

e ltrue = false
e Ib - false

Reminder: The ONLY integer value
that is false is O

| | logical OR
* evaluates both sides logically then does an OR
* true || false - true
e c||O - false
e cl||b - true

. && logical AND
evaluates both sides logically then does an AND
* true && true > true
e c&&Db - false
* X&&Y - true

EE 1910 7 © tj

] A a = 0x86;
* Bitwise Operators b = OXA5:
e ~ bitwise not =-35
* inverts the individual bits in a number
* Thisis NOT the 2’s complement

 ~a> ~(1000 0110) > 0111 1001 > 0x79
« ~c = ~(1101 1101) = 0010 0010 > 34

* | bitwise or
* ORs the individual bits
* a| b—->(10000110) | (1010 0101) = 10100111 > OxA7

e & bitwise and
* ANDs the individual bits
* a&b—> (1000 0110) & (1010 0101) - 1000 0100 —> 0x84

e A bitwise xor
e XORs the individual bits
* a’b—>(10000110) ~ (1010 0101) = 0010 0011 - 0x23

EE 1910 8 © tj

uint_8 a;

int_ 8 b;

* Bitwise Operators a = OXA6;
b = OxA6;

e >> bitwise shift right
 shifts the individual bits in a number to the right
* Uses sign extension to fill in the bits

e a>>2—>(10100110) >> 2 - 0010 1001 - unsigned
OR
* b>>2->(10100110) >> 2 - 11101001 - signed

e << bitwise shift left

e shifts the individual bits in a number to the left
* Fills the bits with O

* a<<3->(10100110)<<3 - 0011 0000 - unsigned
OR
* b<<3->(10100110) << 3 — 0011 0000 - signed

EE 1910 9 © tj

* Assignment

* = assighnment
e variable = expression

a=10;
b =20;

* Has both a value - result of right side

* And a side effect — places value into the variable on the left

side

e c=a+b; 2 cassigned the value 30

e Compound variations
¥= [= 4= -= %=
a*=b2>a=a*b
a+=10—2>a=a+10
a-=b+c>a=a-(b+c)

EE 1910 10

note: whole right side evaluated first

© tj

* Pre/Post Fix

* ++ increment
e - decrement

* The operation of these operators is covered in the
expressions notes

EE 1910 11 © tj

