Precedence

Last updated 8/20/20

- These slides introduce precedence
- Upon completion: You should be able interpret expressions and code based on precedence
- Precedence
- Order in which operators are evaluated
- In math: * and / before + and -
- $2 / 3+3 * 4 \rightarrow((2 / 3)+(3 * 4))$
- Associativity
- Order in which operators with the same precedence are evaluated
- In math: left to right
- $2+3-4+5 \rightarrow(((2+3)-4)+5)$

Precedence

	Precedence	Operator	Description	Associativity	
	1	++ -- () [] - -> (type) $\{$ list $\}$	Suffix/postfix increment and decrement Function call Array subscripting Structure and union member access Structure and union member access through pointer Compound literal(C99)	Left-to-right	
	2	++ -- +- ! ~ (type) * $\&$ sizeof _Alignof	Prefix increment and decrement Unary plus and minus Logical NOT and bitwise NOT Type cast Indirection (dereference) Address-of Size-of Alignment requirement(C11)	Right-to-left	
	3	* / \%	Multiplication, division, and remainder	Left-to-right	
	4	+-	Addition and subtraction		
	5	<<>>	Bitwise left shift and right shift		
	6	$\begin{aligned} & \ll= \\ & \gg= \end{aligned}$	For relational operators < and \leq respectively For relational operators $>$ and \geq respectively		
	7	== !=	For relational = and $=$ respectively		
	8	\&	Bitwise AND		
	9	\wedge	Bitwise XOR (exclusive or)		
	10	\|	Bitwise OR (inclusive or)		
	11	\&\&	Logical AND		
	12	\|		Logical OR	
	13	?:	Ternary conditional	Right-to-Left	
	14	$\begin{aligned} & = \\ & +=-= \\ & *=/=\%= \\ & \ll=\gg= \\ & \&=\text { ^ }=\mid= \end{aligned}$	Simple assignment Assignment by sum and difference Assignment by product, quotient, and remainder Assignment by bitwise left shift and right shift Assignment by bitwise AND, XOR, and OR		
EE 1.	15	,	Comma	Left-to-right	

Precedence

Precedence

- Examples (ints)

$$
\begin{aligned}
& a=2, b=3, c=4 \\
& 1+2 * 3 \rightarrow \\
& 1+2 * 3 / 2 \rightarrow \\
& -b++\quad \rightarrow \\
& a+=b *=c-=3 \rightarrow \\
& --a *(1+b) / 3-c++* b \rightarrow
\end{aligned}
$$

Precedence

- Examples

$$
\begin{aligned}
& a=2, b=3, c=4 \\
& 1+2 * 3 \quad \rightarrow \quad 1+(2 * 3)=7 \\
& 1+2 * 3 / 2 \rightarrow \quad 1+((2 * 3) / 2)=1+(6 / 2)=4 \\
& \text { same precedence (L-R) } \\
& -b++\rightarrow \quad-(b++)=-3 \quad \text { evaluates first }-(b \text { is now } 4) \\
& a+=b^{*}=c-=3 \rightarrow \quad c=1, b=3, a=5 \text { same precedence }(R-L) \\
& --\mathrm{a} *(1+\mathrm{b}) / 3-\mathrm{c}++* \mathrm{~b} \rightarrow \quad--\mathrm{a} *(1+\mathrm{b}) / 3-\mathrm{c}++* \mathrm{~b} \\
& --\mathrm{a} \text { * } 4 / 3-\mathrm{c}++ \text { * b } \\
& --a * 4 / 3-4 * b \\
& \text { 1*4/3-4*b } \\
& \text { 4/3-4*3 } \\
& \text { 1-12 } \\
& \text {-11 }
\end{aligned}
$$

Precedence

- Precedence and Associativity

For clarity and precision

Use Parenthesis freely

$$
\begin{aligned}
& a=2, b=3, c=4 \\
& (((--a) *(1+b)) / 3)-((c++) * b) \rightarrow
\end{aligned}
$$

$$
(((1) *(4)) / 3)-((4) * 3)
$$

$$
((4 / 3)-(12))
$$

$$
(1-12)
$$

$$
-11
$$

