
Statements

Last updated 10/27/20



2 © tjEE 1910

Statements

• These slides introduce 4 types of statements

• Upon completion: You should be able interpret and 
code using these statement types



3 © tjEE 1910

Statements

• Statement

• Causes the processor to do something

• 11 types of statements
• Null
• Expression
• Return
• Compound
• Conditional
• Labeled
• Switch
• Iterative
• Break
• Continue
• Goto



4 © tjEE 1910

Statements

• Statement

• Null Statement
• Causes nothing to happen

;

while(1){

;

}



5 © tjEE 1910

Statements

• Statement

• Expression Statement
• An expression with a semi-colon added

• Causes the processor to evaluate the expression

• Causes the processor to complete any side effects

• Processor discards the expression

• Special note: the side effect of the assignment operator is to 
store a value into a variable



6 © tjEE 1910

Statements

• Statement

• Expression Statement

aa = 5;
; causes the expression to be evaluated → 5

side effect of the assignment (=) is aa holds the value 5

aa = bb = 5;

same precedence, operate R to L

bb = 5
value is 5, side effect is bb holds the value 5

aa = 5
value is 5 (value of BB), side effect is aa holds the value 5

note: this equals 5 (the value), not bb



7 © tjEE 1910

Statements

• Statement

• Expression Statement

ab = 5;
value is 5

side effect is ab takes the value 5

ab++;

value is 5

side effect is ab takes the value 6

the value is then discarded (not assigned to anything)



8 © tjEE 1910

Statements

• Statement

• Return Statement

• Terminates all functions (including main)

int main(void) {

…

return 1;

}



9 © tjEE 1910

Statements

• Statement

• Compound Statement

• Block of code containing zero or more statements

• These statements are considered a single entity

• Defined by {…}

int main(void) {

… // multiple statements

return 1;

}



10 © tjEE 1910

Statements

• Statement

• Pre-processor commands vs statements

#define int_rate 0.25 // pre-processor command

#define int_rate 0.25; // error

payment = int_rate * balance;

creates a compiler error at the “payment =” line

but you never see the expansion

payment = 0.25; * balance;

very difficult to catch


