
Structures

Last updated 10/29/20

2 © tjEE 1910

Structures

• These slides introduce the c type structure

• Upon completion: You should be able interpret and
code using structures

3 © tjEE 1910

Type Definition

• C Types

Derived

Function Array Pointer Structure Union Enumerated

4 © tjEE 1910

Structures

• Concept

• Collection of related elements

• Not necessarily the same type

• Sharing a single name

5 © tjEE 1910

Structures

• Members

• Elemental unit is called a Member (Field)

• Members look just like a variable
• have a type

• takes up memory space

• can be assigned values

• can be read

• Only difference is that a Member is part of a Structure

6 © tjEE 1910

Structures

• Members

fraction

denominatornumerator

ID name GPA

student

structure

members

members

7 © tjEE 1910

Structures

• 3 ways to create structures
• Individual declaration

struct {
int id;
char name[26];
float gpa;

} stu1, stu2;

format
struct {

list of members
} variable name(s);

declaration/initialization
struct {

int id;
char name[26];
float gpa;

} stu1 = {.id=245, .name=“john”, .gpa=3.5},
stu2 = {246, “sally”, 3.6};

Order matters

Order doesn’t matter

If not fully specified, int and float members default to 0, 0.0
char members default to null - \0

All members are unknown values

Structure variables
stu1, stu2

8 © tjEE 1910

Structures

• 3 ways to create structures
• Tag

definition
struct student{

int id;
char name[26];
float gpa;

} ;

format
struct tag{

list of members
} ;

declaration/initialization
struct student stu1 = {.id=245,

.name=“john”,

.gpa=3.5};

Order matters

Order doesn’t matter

declaration/ initialization
struct student stu1 = {245,

“john”,
3.5};

declaration
struct student stu0;

If not fully specified, int and float members default to 0, 0.0
char members default to null - \0

All members are unknown values

Structure variables
stu0, stu1, stu2

9 © tjEE 1910

Structures

• 3 ways to create structures
• Typedef – create a new type

definition
typedef struct {

int id;
char name[26];
float gpa;

} student ;

format
typedef struct {

list of members
} type_name ; declaration/initialization

student stu1 = {.id=245,
.name=“john”,
.gpa=3.5};

Order matters

Order doesn’t matter

declaration/ initialization
student stu1 = {245,

“john”,
3.5};

declaration
student stu0;

If not fully specified, int and float members default to 0, 0.0
char members default to null - \0

All members are unknown values

Structure variables
stu0, stu1, stu2

10 © tjEE 1910

Structures

• Member Access
• You can access the member variables using the structure

access operator

• structure access operator .

structure_variable.member

Given a structure variable named stu1

stu1.id

stu1.name

stu1.gpa

11 © tjEE 1910

Structures

• Member Access

stu2.gpa = 2.5; // set the member variable gpa to 2.5

if(stu1.gpa >= 3.5){

…

}

printf(“student GPA: %.2f”, stu2.gpa);

scanf(“%f”, &stu1.gpa); Note: access operator . has higher priority than address-of operator &
so no parenthesis required

12 © tjEE 1910

Structures

• Structure

• Manipulation
• Only one operation – assignment

stu2 = stu1; // copy all member values from stu1 to stu2

// must be the same structure (or type)

13 © tjEE 1910

Structures

• Pointers and structures
• Given a structure variable created using one of the 3

processes

• Can create and use structure pointers

Given structure variable stu1 of structure type student

student* student_ptr; // define a pointer of student type

student_ptr = &stu1; // student_ptr now points to stu1

• All normal pointer operations can be applied
(Note: pointer arithmetic operates on the entire structure, not on the elements)

14 © tjEE 1910

Structures

• Pointers and structures
• 2 ways to access a member value from a pointer

Given structure variable stu1 of structure type student

student* student_ptr; // define a pointer of student type

student_ptr = &stu1; // student_ptr now points to stu1

(*student_ptr).GPA = 3.66; // dereference

student_ptr->GPA = 3.66; // indirect selection

Note () required to ensure the structure is dereferenced before accessing the member

15 © tjEE 1910

Structures

• Scope considerations
• Structures are treated like any other variable with

respect to scope

• Structure members are considered to be in the structure
scope
• No conflict in having structure member names the same as

other variables since their scope is limited to the structure

• Typedef and Tag definitions typically belong in the global
section of a file – so everything recognizes them

• Variable declarations are treated like any other variable
• Place them in whatever scope is appropriate

• We will use either Typedef or Tag definitions to avoid
issues with Individual definitions and scope

16 © tjEE 1910

• Structure definitions and member
access

Structures

typedef tag

pointer access

dereference

17 © tjEE 1910

• Structures and functions

Structures

structure notation for fields

structure passed

pointer notation for fields

pointer to structure

18 © tjEE 1910

• Register Access – revisited
• MSP registers are defined as structures

Structures

Port register structure

typedef struct {
__I uint8_t IN; /*!< Port Input */
uint8_t RESERVED0;
__IO uint8_t OUT; /*!< Port Output */
uint8_t RESERVED1;
__IO uint8_t DIR; /*!< Port Direction */
uint8_t RESERVED2;
__IO uint8_t REN; /*!< Port Resistor Enable */
uint8_t RESERVED3;
__IO uint8_t DS; /*!< Port Drive Strength */
uint8_t RESERVED4;
__IO uint8_t SEL0; /*!< Port Select 0 */
uint8_t RESERVED5;
__IO uint8_t SEL1; /*!< Port Select 1 */
uint8_t RESERVED6;
__I uint16_t IV; /*!< Port Interrupt Vector Value */
uint8_t RESERVED7[6];
__IO uint8_t SELC; /*!< Port Complement Select */
uint8_t RESERVED8;
__IO uint8_t IES; /*!< Port Interrupt Edge Select */
uint8_t RESERVED9;
__IO uint8_t IE; /*!< Port Interrupt Enable */
uint8_t RESERVED10;
__IO uint8_t IFG; /*!< Port Interrupt Flag */
uint8_t RESERVED11;

} DIO_PORT_Odd_Interruptable_Type;

type name

member names

special qualifiers
for the member
variables
“volatile”

19 © tjEE 1910

• Register Access – revisited
• MSP registers are defined as structures

• “msp.h” includes a series of #define statements

P3 is now defined as the address (pointer of the port
structure type) pointing to the beginning of the Port 3
structure

Structures

#define P3 ((DIO_PORT_Odd_Interruptable_Type*) (DIO_BASE + 0x0020))

location of all I/Os
location of P3
wrt the base

type cast to pointer of the type
defined for the port structure

address of P3 structure

20 © tjEE 1910

• Register Access – revisited
• MSP registers are defined as structures

• “msp.h” includes a series of #define statements

• Port structure members are accessed using the structure
pointer access operator ->

P3->DIR = P3->DIR | 0x04;

Dereferences the P3 pointer to access the DIR member

We could also write

(*P3).DIR = (*P3).DIR | 0x04;

Structures

