Number Systems Two's Compliment

Last updated 8/20/20

Number Systems

- Two's Complement
- Negative numbers are formed by flipping all bits and adding 1
- Positive numbers are formed in normal binary format
- Most Significant Bit (MSB) represents the sign
(but it is NOT a sign bit)
- MSB $=0 \rightarrow$ positive
- MSB = $1 \rightarrow$ negative
- All bits are used to represent the magnitude of the value
- The dominant representation for binary arithmetic

$$
\begin{array}{lll}
50 & \rightarrow & 00110010 \\
-50 & \rightarrow & 1100 \\
& \\
-37 & \rightarrow \\
10010110 & \\
\text { 2's comp }
\end{array}
$$

Number Systems

- Two's Complement
convert -37 decimal to two's complement
8 bits \rightarrow positive bit values of $x|64| 32|16| 8|4| 2 \mid 1$
$s=$ negative $\quad \rightarrow$ flip all bits and add 1 at end

$$
|-37|=37
$$

greatest bit value $\leq 37=32$

$$
37-32=5
$$

greatest bit value $\leq 5=4$
001001

$$
5-4=1
$$

greatest bit value $\leq 1=1$
00100101

$$
1-1=0
$$

Number Systems

- Two's Complement
convert -37 decimal to two's complement - cont'd
$s=$ negative $\quad \rightarrow$ flip all bits and add 1 at end

$$
00100101 \xrightarrow{\text { flip }} 11011010 \stackrel{+1}{\rightarrow} 11011011
$$

$-37 \rightarrow 11011011$ two's complement

Number Systems

- Two's Complement
convert 10010110 two's complement to decimal
MSB is 1 (negative) \rightarrow remember this for the end
\rightarrow flip the bits and add 1 (works both directions)
$10010110 \underset{\text { flip }}{\rightarrow} 01101001 \nrightarrow 101101010$
8 bits \rightarrow positive bit values of $x|64| 32|16| 8|4| 2 \mid 1$
$1 * 64+1 * 32+0 * 16+1 * 8+0 * 4+1 * 2+0 * 1$
$64+32+8+2=106$
sign $=1=$ negative $\rightarrow-106$
10010110_{b} 2's comp $\rightarrow-106$

Number Systems

- Two's Complement
- Maximum values:
- 4 bits $=+7,-8=2^{3}-1,-2^{3}$
- 8 bits $\quad=+127,-128=2^{7}-1,-2^{7}$
- 16 bits $=+32,767,-32,768=2^{15}-1,-2^{15}$
- Not Symmetric

7	6	5	4	3	2	1	0	-1	-2	- 3	-4	. 5	- 6	. 7	- 8
0111	0110	0101	0100	0011	0010	0001	0000	1111	1110	1101	1100	1011	1010	1001	1000

Number Systems

- Two's Complement
- Advantages
- Addition is done the same way as unsigned numbers - same adder circuit
- ONLY 1 ZERO!
- Simple word length extension
- Disadvantages
- Asymmetric range
- Harder to do comparisons
- Not intuitive

Number Systems

- Two's Complement
- Sign Extension
- When extending to larger word sizes, extend the MSB to the left

```
4 bit }8\mathrm{ bit }16\mathrm{ bit
0110 -> 00000110 ->0000000000000110
1001 -> 11111001 -> 1111111111111001
```

this works for 1's complement also
not the same for signed magnitude: $-1=1001 \rightarrow 10000001=-1$

Number Systems

- Two's Complement

- Fast way to do 2's complement conversions
- working from the right
find the first 1 and leave it and all preceding 0's the same flip all remaining bits to the left
remember the MSB value and set the sign
10010110 2's complement
10 - first 1 from the right

01101010 - all remaining bits flipped

106

- 106 - since we started with a MSB = 1 (negative)

