Number Systems Two's Compliment

Last updated 8/20/20

- Two's Complement
 - Negative numbers are formed by flipping all bits and adding 1
 - Positive numbers are formed in normal binary format
 - Most Significant Bit (MSB) represents the sign (but it is NOT a sign bit)
 - MSB = 0 \rightarrow positive
 - MSB = 1 \rightarrow negative
 - All bits are used to represent the magnitude of the value
 - The dominant representation for binary arithmetic

50	\rightarrow	0011 0010
-50	\rightarrow	1100 1110
-37	\rightarrow	
10010)110 _b 2's	\rightarrow comp \rightarrow

Two's Complement

```
convert -37 decimal to two's complement
```

```
8 bits \rightarrow positive bit values of x | 64 | 32 | 16 | 8 | 4 | 2 | 1
```

s = negative \rightarrow flip all bits and add 1 at end |-37| = 37

```
greatest bit value \leq 37 = 32
37 - 32 = 5
```

001

greatest bit value $\leq 5 = 4$ 5 - 4 = 1

```
greatest bit value \leq 1 = 1
1 - 1 = 0
```

001001

00100101

Two's Complement

convert -37 decimal to two's complement - cont'd

s = negative \rightarrow flip all bits and add 1 at end

 $\begin{array}{c} \begin{array}{c} \text{flip} \\ 0 & 0 & 1 & 0 & 0 & 1 \\ \end{array} \begin{array}{c} \text{flip} \\ \rightarrow & 1 & 1 & 0 & 1 & 1 \\ \end{array} \begin{array}{c} \text{+1} \\ \rightarrow & 1 & 1 & 0 & 1 & 1 \\ \end{array} \begin{array}{c} \text{+1} \\ \rightarrow & 1 & 1 & 0 & 1 & 1 \\ \end{array}$

 $-37 \rightarrow 11011011$ two's complement

Two's Complement

convert 10010110 two's complement to decimal

MSB is 1 (negative) → remember this for the end
→ flip the bits and add 1 (works both directions)

10010110 $\rightarrow_{\text{flip}}$ 01101001 \rightarrow_{+1} 01101010

8 bits \rightarrow positive bit values of x | 64 | 32 | 16 | 8 | 4 | 2 | 1

```
1*64 + 1*32 + 0*16 + 1*8 + 0*4 + 1*2 + 0*1
64 + 32 + 8 + 2 = 106
```

sign = 1 = negative \rightarrow -106

```
10010110_{b} 2's comp \rightarrow -106
```

© ti

- Two's Complement
 - Maximum values:
 - 4 bits = $+7, -8 = 2^3 1, -2^3$
 - 8 bits = + 127, -128 = 2⁷-1, -2⁷
 - 16 bits = +32,767,-32,768 = $2^{15}-1,-2^{15}$
 - Not Symmetric

 7
 6
 5
 4
 3
 2
 1
 0
 -1
 -2
 -3
 -4
 -5
 -6
 -7
 -8

 0111
 0110
 0101
 0011
 0010
 0001
 0000
 1111
 1100
 1011
 1010
 1001
 1000

- Two's Complement
 - Advantages
 - Addition is done the same way as unsigned numbers same adder circuit
 - ONLY 1 ZERO !
 - Simple word length extension
 - Disadvantages
 - Asymmetric range
 - Harder to do comparisons
 - Not intuitive

	1	6	5	4	3	2	1	0	-1	-2	-3	-4	-5	-6	-7 1001	-8	
\backslash	0111	0110	0101	0100	0011	0010	0001	0000	1111	1110	1101	1100	1011	1010	1001	1000	

- Two's Complement
 - Sign Extension
 - When extending to larger word sizes, extend the MSB to the left

4 bit	8 bit	16 bit
<mark>0</mark> 110 →	00000110 -	→ 0000000000000110
1001 →	11111001	→ 1111111111111001

this works for 1's complement also not the same for signed magnitude: $-1 = 1001 \rightarrow 1000001 = -1$

- Two's Complement
 - Fast way to do 2's complement conversions
 - working from the right

find the first 1 and leave it and all preceding 0's the same flip all remaining bits to the left remember the MSB value and set the sign

10010110 2's complement

10 - first 1 from the right

01101010 - all remaining bits flipped

106

- 106 - since we started with a MSB = 1 (negative)