Last updated 1/10/19




EE 2510

e Stack

* A section of Data memory

* Used to hold all temporary variables whose size is known
at compile time
* Return address for a function
* Copies of parameters passed into a function
 Temporary variables used in a function

* Counters, ...
* An array with 26 elements inside a function

* Note — main is just another function

© tj



EE 2510

* Heap
Section of Data memory

Dynamic memory
* Created and destroyed by the program

Persists until you de-allocate it

Typically dependent on run time information

* The heap is used to hold all variables whose size are not known at
compile time

e Store a list of numbers from the user, where the # of inputs is not known
ahead of time

Can be accessed throughout the program and it’s
functions

© tj



* Data Memory
e Stack and heap grow towards each other

End

Beginning
EE 2510

Data

Text

Temporary
values

Execution
_ created and
destroyed

B Allocated but
not initialized

_

_ Allocated and
initialized

Dynamically allocated
created during execution

_ Statically allocated
assigned by the compiler

— —

Program code

4

© tj



e Allocating dynamic memory

e Use the new operator
* Assign a chunk of memory in the heap
* Operand is a “type” and optionally a number of elements

e Evaluates to a pointer — pointing to the beginning of the chunk of
memory

int * foo_ptr;
foo ptr = new int;

float * boo_ptr;

boo ptr = new float[i]; Allocates a number of

memory elements
(not an array)

char * soo_ptr = new char[i];

i would typically be a run time value

EE 2510 5 © tj



EE 2510

e Cleaning up dynamic memory

* Dynamic memory allocated during program execution
persists until either
* The end of the run

 The memory is de-allocated

 Failure to clean up no longer needed allocated memory
can cause the program to run out of memory over time

e Called a memory leak

delete foo ptr;
delete[] boo_ptr;

delete[] soo_ptr;

© tj



EE 2510

e Allocating dynamic memory

 What happens if there is no memory left to allocate
e System “throws” an exception
e 2 approaches to deal with the exception

1. Prevent the system from throwing it v
2. Setup an exception handler

© tj



e Allocating dynamic memory

* Preventing the system from throwing an exception
e Tell the system not to throw an exception
* (nothrow) added to the new operator

int * foo_ptr;
foo_ptr = new (nothrow) int;

float * boo_ptr;
boo_ptr = new (nothrow) float[i];

char * soo_ptr = new (nothrow) char[i];

i would typically be a run time value

EE 2510 8

© tj



EE 2510

e Allocating dynamic memory

* Preventing the system from throwing an exception
e But what if we run out of memory?
* Ifit cannot allocate the memory it will not create the pointer
* The pointer variable’s value will be null “0”
* We can test for this and exit cleanly
e Requires inclusion of <cstlib>

float * boo_ptr;

boo ptr = new (nothrow) float[i];

if(boo_ptr == 0){
cout << "Error: Could not create dynamic memory.\n";
exit(EXIT_FAILURE);

}

requires <cstdlib> be included

© tj



