
Dynamic Memory
Allocation

Last updated 1/10/19

2 © tjEE 2510

Dynamic Memory Allocation

• Stack
• A section of Data memory

• Used to hold all temporary variables whose size is known
at compile time
• Return address for a function

• Copies of parameters passed into a function

• Temporary variables used in a function
• Counters, …

• An array with 26 elements inside a function

• Note – main is just another function

3 © tjEE 2510

Dynamic Memory Allocation

• Heap
• Section of Data memory

• Dynamic memory
• Created and destroyed by the program

• Persists until you de-allocate it

• Typically dependent on run time information
• The heap is used to hold all variables whose size are not known at

compile time
• Store a list of numbers from the user, where the # of inputs is not known

ahead of time

• Can be accessed throughout the program and it’s
functions

4 © tjEE 2510

Dynamic Memory Allocation

• Data Memory
• Stack and heap grow towards each other

Heap

Bss

Data

Stack

Beginning

End

Statically allocated
assigned by the compilerAllocated and

initialized

Allocated but
not initialized

Dynamically allocated
created during execution

Execution
created and
destroyed

Temporary
values

Text Program code

5 © tjEE 2510

Dynamic Memory Allocation

• Allocating dynamic memory
• Use the new operator
• Assign a chunk of memory in the heap

• Operand is a “type” and optionally a number of elements

• Evaluates to a pointer – pointing to the beginning of the chunk of
memory

int * foo_ptr;
foo_ptr = new int;

float * boo_ptr;
boo_ptr = new float[i];

char * soo_ptr = new char[i];

i would typically be a run time value

Allocates a number of
memory elements
(not an array)

6 © tjEE 2510

Dynamic Memory Allocation

• Cleaning up dynamic memory
• Dynamic memory allocated during program execution

persists until either
• The end of the run

• The memory is de-allocated

• Failure to clean up no longer needed allocated memory
can cause the program to run out of memory over time
• Called a memory leak

delete foo_ptr;

delete[] boo_ptr;

delete[] soo_ptr;

7 © tjEE 2510

Dynamic Memory Allocation

• Allocating dynamic memory
• What happens if there is no memory left to allocate
• System “throws” an exception

• 2 approaches to deal with the exception

1. Prevent the system from throwing it ✔

2. Setup an exception handler

8 © tjEE 2510

Dynamic Memory Allocation

• Allocating dynamic memory
• Preventing the system from throwing an exception
• Tell the system not to throw an exception

• (nothrow) added to the new operator

i would typically be a run time value

int * foo_ptr;
foo_ptr = new (nothrow) int;

float * boo_ptr;
boo_ptr = new (nothrow) float[i];

char * soo_ptr = new (nothrow) char[i];

9 © tjEE 2510

Dynamic Memory Allocation

• Allocating dynamic memory
• Preventing the system from throwing an exception
• But what if we run out of memory?
• If it cannot allocate the memory it will not create the pointer

• The pointer variable’s value will be null “0”

• We can test for this and exit cleanly

• Requires inclusion of <cstlib>

float * boo_ptr;
boo_ptr = new (nothrow) float[i];
if(boo_ptr == 0){

cout << "Error: Could not create dynamic memory.\n";
exit(EXIT_FAILURE);

}

requires <cstdlib> be included

