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Dynamic Memory Allocation

• Stack
• A section of Data memory

• Used to hold all temporary variables whose size is known 
at compile time
• Return address for a function

• Copies of parameters passed into a function

• Temporary variables used in a function
• Counters, …

• An array with 26 elements inside a function

• Note – main is just another function
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Dynamic Memory Allocation

• Heap
• Section of Data memory

• Dynamic memory
• Created and destroyed by the program

• Persists until you de-allocate it

• Typically dependent on run time information
• The heap is used to hold all variables whose size are not known at 

compile time
• Store a list of numbers from the user, where the # of inputs is not known 

ahead of time

• Can be accessed throughout the program and it’s 
functions
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Dynamic Memory Allocation

• Data Memory
• Stack and heap grow towards each other
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Dynamic Memory Allocation

• Allocating dynamic memory
• Use the new operator
• Assign a chunk of memory in the heap

• Operand is a “type” and optionally a number of elements

• Evaluates to a pointer – pointing to the beginning of the chunk of 
memory

int * foo_ptr;
foo_ptr = new int;

float * boo_ptr;
boo_ptr = new float[i];

char * soo_ptr = new char[i];

i would typically be a run time value

Allocates a number of 
memory elements 
(not an array)



6 © tjEE 2510

Dynamic Memory Allocation

• Cleaning up dynamic memory
• Dynamic memory allocated during program execution 

persists until either
• The end of the run

• The memory is de-allocated

• Failure to clean up no longer needed allocated memory 
can cause the program to run out of memory over time
• Called a memory leak

delete foo_ptr;

delete[] boo_ptr;

delete[] soo_ptr;
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Dynamic Memory Allocation

• Allocating dynamic memory
• What happens if there is no memory left to allocate
• System “throws” an exception

• 2 approaches to deal with the exception

1. Prevent the system from throwing it        ✔

2. Setup an exception handler
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Dynamic Memory Allocation

• Allocating dynamic memory
• Preventing the system from throwing an exception
• Tell the system not to throw an exception

• (nothrow) added to the new operator

i would typically be a run time value

int * foo_ptr;
foo_ptr = new (nothrow) int;

float * boo_ptr;
boo_ptr = new (nothrow) float[i];

char * soo_ptr = new (nothrow) char[i];
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Dynamic Memory Allocation

• Allocating dynamic memory
• Preventing the system from throwing an exception
• But what if we run out of memory?
• If it cannot allocate the memory it will not create the pointer

• The pointer variable’s value will be null “0”

• We can test for this and exit cleanly

• Requires inclusion of <cstlib>

float * boo_ptr;
boo_ptr = new (nothrow) float[i];
if(boo_ptr == 0){

cout << "Error: Could not create dynamic memory.\n";
exit(EXIT_FAILURE);

}

requires <cstdlib> be included


