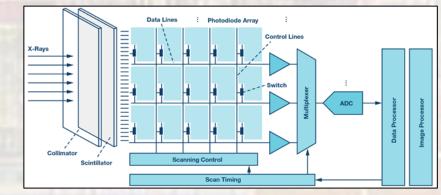
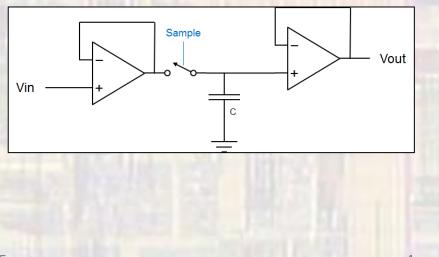

Analog to Digital Converter - Basics

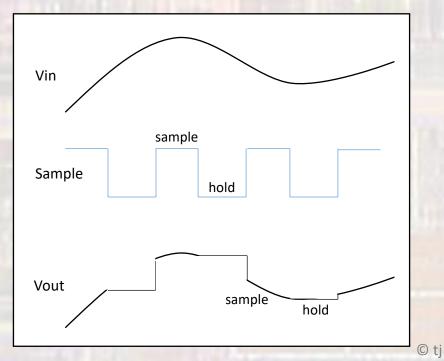
Last updated 5/12/21



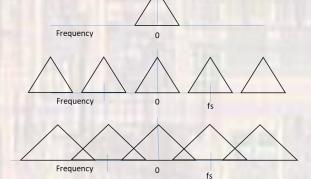
Brain Waves

X-Rays

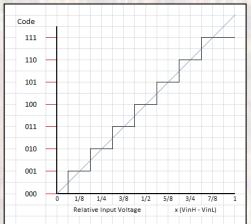

2


- - - -

EE 2905


- Analog to Digital Conversion
 - Most of the real world is analog
 - temperature, pressure, voltage, current, ...
 - To work with these values in a computer we must convert them into digital representations
 - Three steps to this conversion
 - Sampling
 - Quantizing
 - Encoding

- Sampling
 - A to D Conversion takes a finite amount of time
 - What if the input changes during this time?
 - We must take a snapshot of the input → Sample and Hold



- Sampling
 - Sampling is a kind of MODULATION
 - Modulation systems are subject to corruption called Aliasing
 - $f_{in} < f_s/2$
 - f_{in} input signal maximum frequency
 - f_s sampling frequency
 - Nyquist Rate = required sampling frequency
 - → LPF the input (anti-aliasing filter)

- Quantizing
 - In the A to D process, we are converting an "infinite" resolution analog signal into a finite number of digital bits
 - Converters use reference voltages to set the range of allowed input voltages - Vref-H, Vref-L
 - Each binary step represents
 (V_{ref-H} V_{ref-L}) / 2ⁿ for an n bit conversion

- The difference (error) between the original analog signal and the digital equivalent is called quantization error
- This error looks like noise in the system

- Encoding
 - The digital result of the A/D conversion can be encoded (represented) in many ways.
 - Thermometer code
 - N bits for N levels

Decimal		Th	erm	ome	ter	code	
	D1	D2	D3	D4	D5	D6	D7
0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	1
2	0	0	0	0	0	1	1
3	0	0	0	0	1	1	1
4	0	0	0	1	1	1	1
5	0	0	1	1	1	1	1
6	0	1	1	1	1	1	1
7	1	1	1	1	1	1	1

- Binary code
 - log₂N bits for N levels

	A0	A1	A2			
0	0	0	0			
1	0	0	1			
2	0	1	0			
0 1 2 3 4 5 6 7	0 0 0 1 1	0 0 1 1 0 0 1 1	1 0 1 0 1 0 1			
4	1	0	0			
5	1	0	1			
6	1	1	0			
7	1	1	1			

Decimal Binary

- A/D Conversion Example 1
- 10 bit converter with VrefH=3.0V, VrefL=0.0V
- If the input is 2V, what is the output code?

VrefH-VrefL = 3V range

10 bit converter step size = range/2¹⁰ = 2.9297mV/step

© tj

2V / 2.9297mV/step = 682 steps from VrefL 10 1010 1010

- A/D Conversion Example 2
- 8 bit converter with VrefH=5.0V, VrefL=0.0V
- If the output code is 0x22, what was the input voltage?

VrefH-VrefL = 5V range

8 bit converter step size = range/2⁸ = 19.5mV/step

 $0x22 \rightarrow 34 \text{ steps} \rightarrow ~0.664V$

remember – there is always some error

- Types of A/D converters
 - Successive Approximation (SAR) ADC
 - Most common moderate speed and resolution
 - Delta-sigma (ΔΣ) ADC
 - Best resolution
 - Dual Slope ADC
 - Pipelined ADC
 - Flash ADC
 - Fastest