
Last updated 5/14/21

- ADC Resolution
 - Nucleo-L476RG has three 12Bit ADCs
 - mbed only supports 1 ADC
 - mbed scales ALL measurement (see class functions)

- ADC Connections
 - Nucleo-L476RG has 11 analog inputs assigned to the Arduino header
 - Nucleo-L476RG has 4 additional analog inputs assigned to the Morpho header (not shown)

3

- ADC Reference Voltage
 - Nucleo-L476RG uses 3.3V as the default Vref for the ADC
 - Note:
 - This value is not the same as the "reference_voltage" used in the AnalogIn class functions
 - The class functions use "reference voltage" as a scaling factor
 - The "reference_voltage" can be set to anything you want it ONLY impacts the read_voltage function scaling factor, not the actual Vref value

- AnalogIn Class
 - #include <<u>AnalogIn.h</u>> already included with mbed.h

Public Member Functions

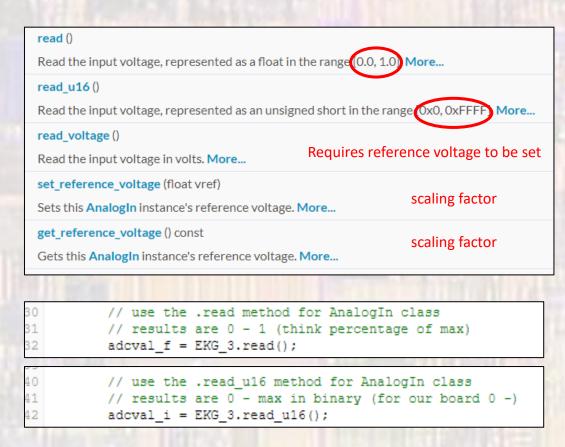
	AnalogIn (const PinMap &pinmap, float vref=MBED_CONF_TARGET_DEFAULT_ADC_VREF) Create an AnalogIn, connected to the specified pin. More
	AnalogIn (PinName pin, float vref=MBED_CONF_TARGET_DEFAULT_ADC_VREF) Create an AnalogIn, connected to the specified pin. More
float	read () Read the input voltage, represented as a float in the range [0.0, 1.0]. More
unsigned short	read_u16 () Read the input voltage, represented as an unsigned short in the range [0x0, 0xFFFF]. More
float	read_voltage () Read the input voltage in volts. More
void	set_reference_voltage (float vref) Sets this AnalogIn instance's reference voltage. More
float	get_reference_voltage () const Gets this AnalogIn instance's reference voltage. More
	operator float () An operator shorthand for read() More

Constructors

25

26

AnalogIn (const PinMap &pinmap, float vref=MBED_CONF_TARGET_DEFAULT_ADC_VREF)


Create an AnalogIn, connected to the specified pin. More...

AnalogIn (PinName pin, float vref=MBED_CONF_TARGET_DEFAULT_ADC_VREF)

Create an AnalogIn, connected to the specified pin. More...

// Create an ADC object, attached to A3
AnalogIn EKG_3(A3);

Member Functions (Methods)

Operator Overloads

operator float ()

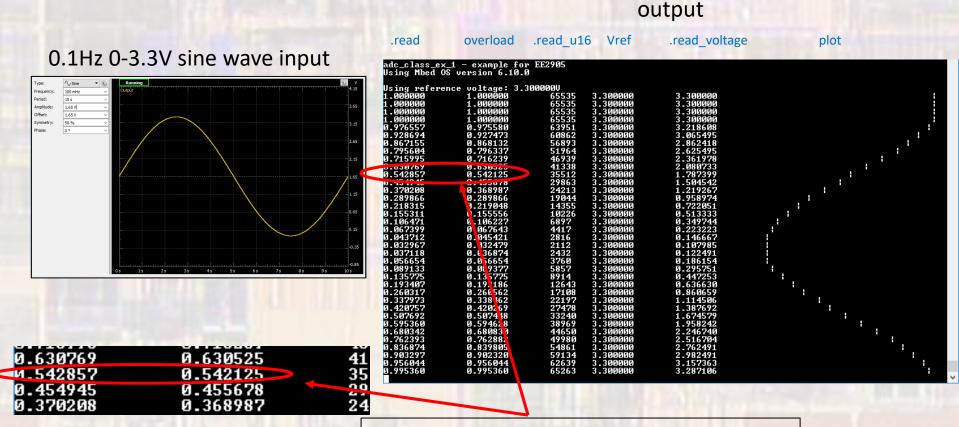
35

36

An operator shorthand for read() More...

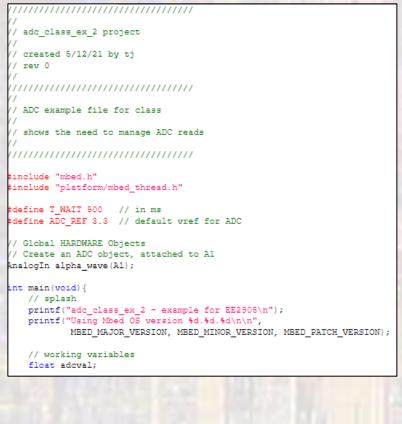
// use the overload method for .read
// results are 0 - 1 (think percentage of max)
adcval_f = EKG_3;

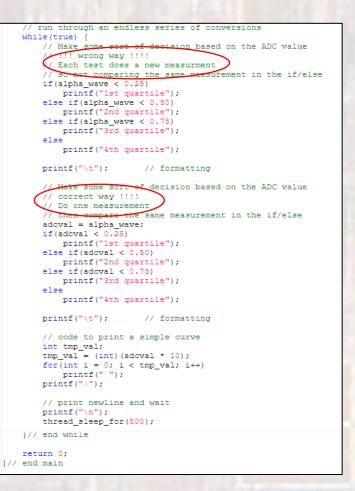
- Simple example 1
 - Running conversions using different methods

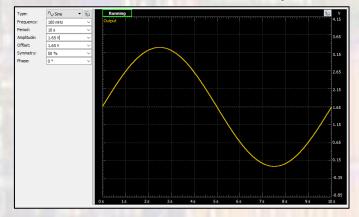

```
// adc class ex 1 project
// created 5/12/21 by tj
// rev 0
// ADC example file for class
11
// shows various ways to create and access the ADC functionality
#include "mbed.h"
#include "platform/mbed thread.h"
#define T WAIT 500 // in ms
#define ADC REF 3.3 // default vref for ADC
// Global HARDWARE Objects
// Create an ADC object, attached to A3
AnalogIn EKG 3(A3);
int main(void) {
   // splash
   printf("adc_class_ex_1 - example for EE2905\n");
   printf("Using Mbed OS version %d.%d.%d\n\n",
          MBED MAJOR VERSION, MBED MINOR VERSION, MBED PATCH VERSION);
   // working variables
   float adeval f;
   int adeval i;
   //Define and verify the reference for the ADC
   // required to use the read voltage method
   EKG 3.set reference voltage(ADC REF);
   printf("Using reference voltage: %fV\n", EKG 3.get reference voltage());
```

```
// run through an endless series of conversions
while(1) {
   // use the .read method for AnalogIn class
   // results are 0 - 1 (think percentage of max)
    adcval f = EKG 3.read();
   printf("%f\t", adcval f);
    // use the overload method for .read
    // results are 0 - 1 (think percentage of max)
   adcval f = EKG 3;
   printf("%f\t", adcval_f);
   // use the .read u16 method for AnalogIn class
    // results are 0 - max in binary (for our board 0 -)
    adcval i = EKG 3.read u16();
   printf("%i\t", adcval_i);
   // use the .read voltage method for AnalogIn class
    // results are 0 - Vref (for our board 3.3v)
    adcval f = EKG 3.read voltage();
   printf("%f\t", EKG 3.get reference voltage());
    printf("%f\t", adcval_f);
   // code to print a simple curve
    int tmp_val;
    tmp val = (int) (adcval f * 10);
    for(int i = 0; i < tmp val; i++)</pre>
        printf(" ");
   printf("|");
```

```
// print newline and wait
printf("\n");
thread_sleep_for(T_WAIT);
}// end while
```


return 0; }// end main

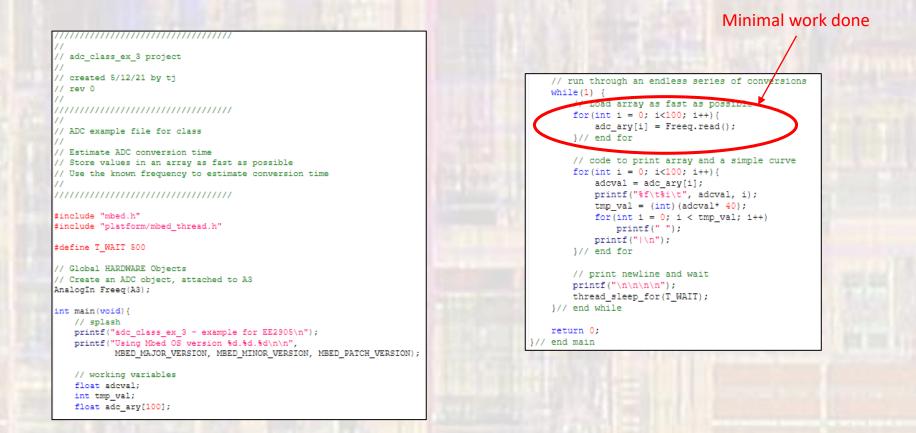

• Simple example 1 - results


Note – different conversion values – WHY?

- Simple example 2
 - Decisions based on ADC value
 - Wrong way and right way

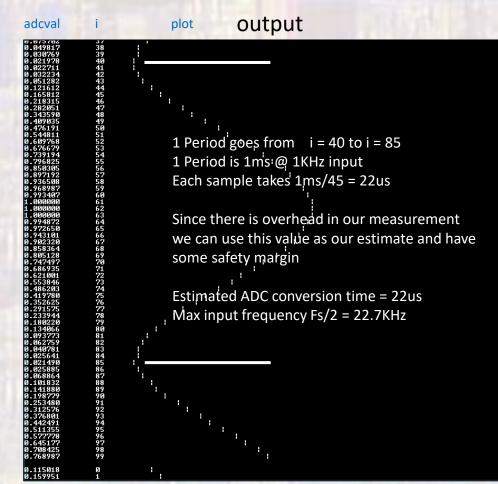
• Simple example 2 - results

0.1Hz 0-3.3V sine wave input


Up	to 4 reads	1	read			
ade	_class_ex_	2 - ev:	male for	. FE2905		
Usi	ng Mbed OS	versi	on 5.14.			
	-					
4th	quartile	4th	quartile	•		
4th	quartile		quartile			
4th	quartile		quartil			
400	quartile	4th 4th	quartile	2		
441	quartile quartile		quartile quartile		:'	
	quartile		quartile			
3 wd	quartile	3rd	quartile	- -		
	quartile	3rd	quartile	2		
	quartile	2nd	quartil	2		
	quartile	2nd	quartile	÷		
2nd	quartile		quartile	•		
1st	guartile		quartil		}	
1st	quartile		quartil			
1st	quartile		quartile	· ·		
1st		1st	quartile			
1st	quartile	1st	quartil	;		
1st	quartile	lst	quartile			
	quartile		quartil			
ist 1st	quartile		quartile			
1st	quartile quartile	1st	quartile quartile			
	quartile	1st 1st				
1st	quartile	1st	quartil		9	
2nd	quartile	2nd	quartil	2		
	quartile	2nd	quartile			
2nd			quartil			
3rd	quartile	3rd	quartile	•		
	quartile		quartil			
3rd	quartile		quartile			
4th	quartile		quartile		· · ·	
4th	quartile		quartil		· · ·	
	quartile		quartile			
	quartile		quartile			
4th	quartile	4th	quartile	2		

output

- Simple example 3
 - Estimate the conversion time for the ADC
 - Use a known frequency input signal
 - Run the ADC as fast as possible
 - Do as little as possible between conversions
 - Store into an array
 - Print out the array and count how many conversions are done in a single period


T/#conversions \rightarrow time for 1 conversion

- Simple example 3
 - Estimate the conversion time for the ADC

• Simple example 3 - results

1KHz 0-3.3V sine wave input

The actual ADC is capable of running much faster than this (5Msps)

Our Nucleo/mbed implementation has set some default parameters that lead to this result