
Last updated 6/4/21

- DAC Resolution
 - Nucleo-L476RG has two 12Bit DACs
 - Referenced to 3.3V
 - 4096 steps on 3.3v → 805uV/step
 - May be limited by noise

- DAC Connections
 - Nucleo-L476RG has 2 analog (DAC) outputs assigned to the Arduino header
 - Nucleo-L476RG has 0 additional analog (DAC) outputs assigned to the Morpho header (not shown)

AnalogOut Class

Public Member	r Functions
	AnalogOut (PinName pin)
	Create an AnalogOut connected to the specified pin. More
	AnalogOut (const PinMap &&)=delete
	Create an AnalogOut connected to the specified pin. More
void	write (float value)
	Set the output voltage, specified as a percentage (float) More
void	write_u16 (unsigned short value)
	Set the output voltage, represented as an unsigned short in the range [0x0, 0xFFFF]. More.
float	read ()
	Return the current output voltage setting, measured as a percentage (float) More
AnalogOut &	operator= (float percent)
	An operator shorthand for write() More
AnalogOut &	operator= (AnalogOut &rhs)
	An operator shorthand for write() More
	operator float ()
	An operator shorthand for read() More

Constructors

AnalogOut (PinName pin)
Create an AnalogOut connected to the specified pin. More
AnalogOut (const PinMap &&)=delete
Create an AnalogOut connected to the specified pin. More

// Create a DAC object, attached to A2
AnalogOut Defib(A2);

Member Functions (Methods)

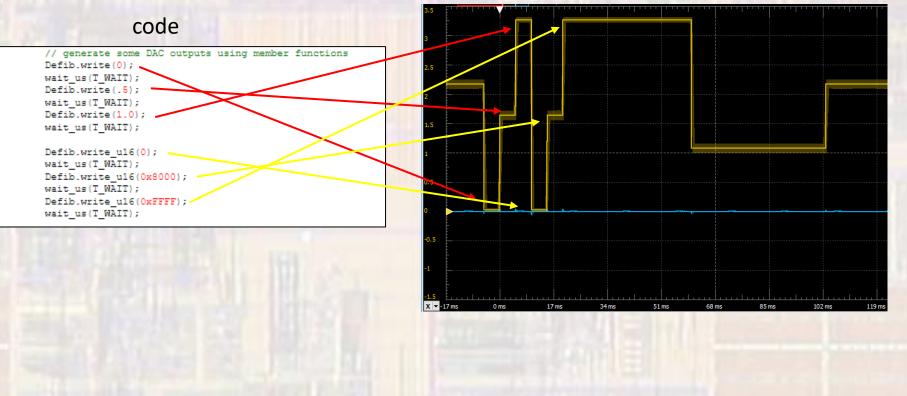
void	write (float value)		
	Set the output voltage, specified as a percentage float) More $0-1.0$		
void	write_u16 (unsigned short value) $0 - 65535$		
	Set the output voltage, represented as an unsigned short in the range [0x0, 0xFFF]. Mo		
float	read ()		
	Return the current output voltage setting, measured as a percentage (float) More		

// generate some DAC outputs using member functions
Defib.write(0);

Operator Overloads

AnalogOut &	operator= (float percent)
	An operator shorthand for write() More
AnalogOut &	operator= (AnalogOut &rhs)
	An operator shorthand for write() More
	operator float ()

// use the overloaded operators
Defib = 0.33;

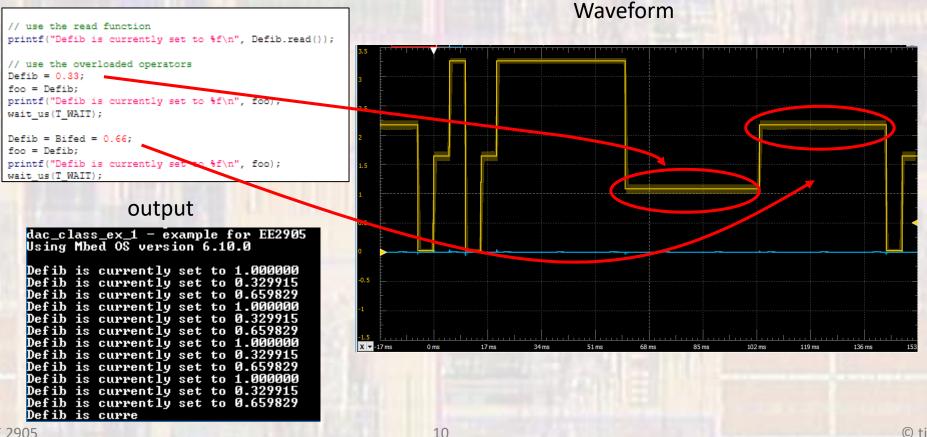

- Simple example 1
 - Generate a series of analog output voltages
 - 5ms for each level

```
// dac class ex 1 project
11
// created 5/12/21 by tj
// rev 0
11
// DAC example file for class
11
// shows basic DAC commands
finclude "mbed.h"
#include <stdio.h>
#define T WAIT 5000
                     // in us = 5ms
// Global HARDWARE Objects
// Create DAC objects, attached to A2 and D13
AnalogOut Defib(A2);
AnalogOut Bifed(D13);
int main(void) {
   // splash
   printf("dac class ex 1 - example for EE2905\n");
   printf("Using Mbed OS version %d.%d.%d\n\n",
           MBED MAJOR VERSION, MBED MINOR VERSION, MBED PATCH VERSION);
   // working variables
   float foo:
```

```
// run through an endless series of conversions
while(1){
    // generate some DAC outputs using member functions
    Defib.write(0);
    wait us(T WAIT);
    Defib.write(.5);
    wait us(T WAIT);
    Defib.write(1.0);
    wait us(T WAIT);
    Defib.write u16(0);
    wait us(T WAIT);
    Defib.write u16(0x8000);
    wait us(T WAIT);
    Defib.write u16(0xFFFF);
    wait us(T WAIT);
    // use the read function
    printf("Defib is currently set to %f\n", Defib.read());
    // use the overloaded operators
    Defib = 0.33;
    foo = Defib;
    printf("Defib is currently set to %f\n", foo);
    wait us(T WAIT);
    Defib = Bifed = 0.66;
    foo = Defib;
    printf("Defib is currently set to %f\n", foo);
   wait us(T WAIT);
}// end while
return 0:
```

// end main

- Simple example 1 output levels
 - Generate a series of analog output voltages
 - 5ms for each level



9

Waveform

- Simple example 1 output levels
 - Generate a series of analog output voltages
 - 5ms for each level

code

- Simple example 1 output levels
 - Generate a series of analog output voltages

11

5ms for each level

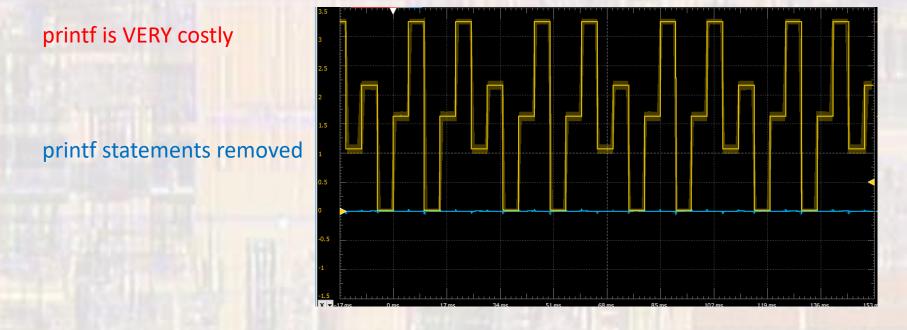
code

// use the read function
printf("Defib is currently set to %f\n", Defib.read());

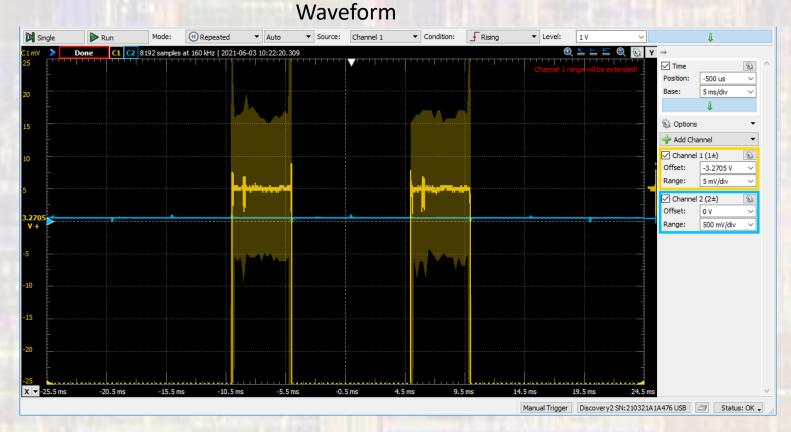
// use the overloaded operators
Defib = 0.33;
foo = Defib;
printf("Defib is currently set to %f\n", foo);
wait_us(T_WAIT);

Defib = Bifed = 0.66; foo = Defib; printf("Defib is currently set to %f\n", foo); wait_us(T_WAIT);

output

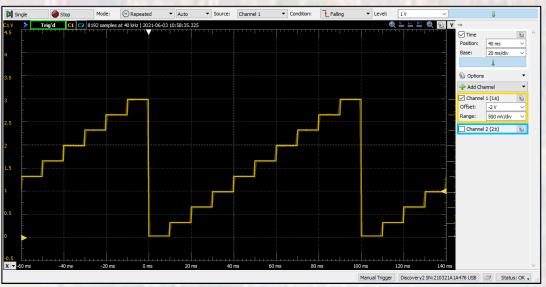

dac_class_ex_1 - example for EE2905
Using Mbed OS version 6.10.0
osing insea of version origin
Defib is currently set to 1.000000
Defib is currently set to 0.329915
Defib is currently set to 0.659829
Defib is currently set to 1.000000
Defib is currently set to 0.329915
Defib is currently set to 0.659829
Defib is currently set to 1.000000
Defib is currently set to 0.329915
Defib is currently set to 0.659829
Defib is currently set to 1.000000
Defib is currently set to 0.329915
Defib is currently set to 0.659829
Defib is curre

Waveform



- Simple example 1 timing
 - Generate a series of analog output voltages
 - 5ms for each level

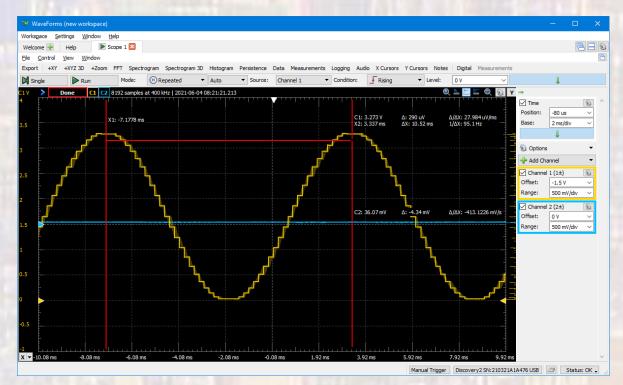
Waveform



- Simple example 1 noise
 - Generate a series of analog output voltages
 - Output noise ≈ +/- 3mv = 0.1% at full scale

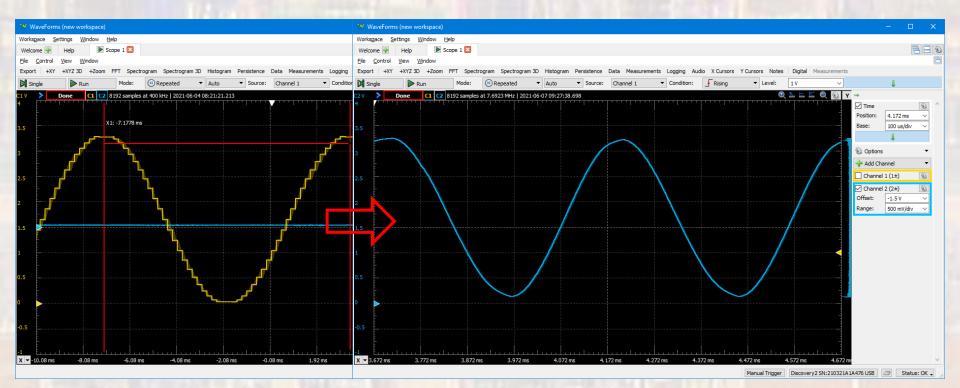
- Simple example 2 part 1
 - Explore ways to write to the DAC
 - Use a for loop

//	
// dac_class_ex_2 project	
// // created 5/12/21 by tj	
// rev 0	
//	
///////////////////////////////////////	
// DAC example file for class	
// explore ways to write to the DAC //	
tinclude "mbed.h"	
finclude mbea.n	1.0
// Global HARDWARE Objects	
// Create a DAC object, attached to A2 AnalogOut Pacer(A2);	
Allarogous Facer(Ab),	
int main(void){	
// splash	
<pre>printf("dac_class_ex_2 - example for EE2905\n"); printf("Using Mbed OS version %d.%d\n\n",</pre>	
MBED MAJOR VERSION, MBED MINOR VERSION, MBED PATCH VERSION)	;
<pre>// run through an endless series of conversions</pre>	
<pre>while(1){ // change the voltage on the digital output pin by 0.1 * VCC</pre>	
<pre>for (int i = 0; i < 10; i++) {</pre>	
<pre>Pacer.write(0.1 * i);</pre>	
wait_us(10000);	
}// end for	
<pre>}// end while</pre>	
return 0;	
<pre>}// end main</pre>	

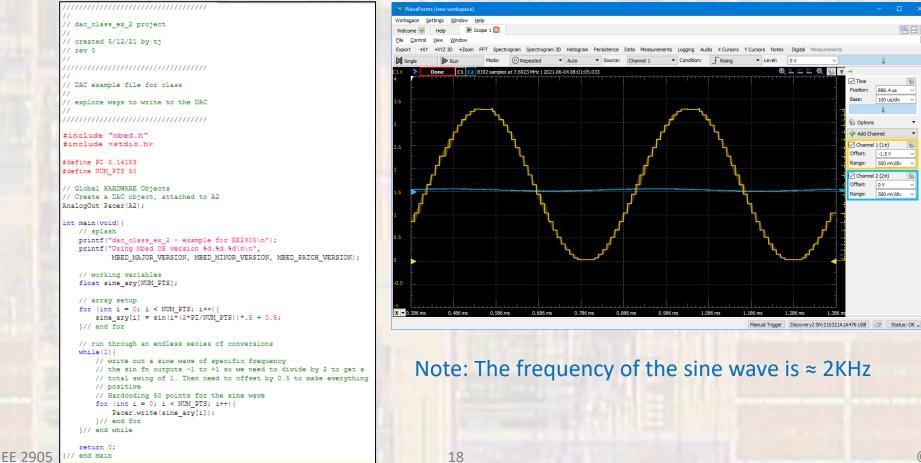


- Simple example 2 part 2
 - Explore ways to write to the DAC
 - Read from an array specify the frequency

```
// dac class ex 2 project
                                                                                         while(1){
// created 5/12/21 by tj
// rev 0
// DAC example file for class
// explore ways to write to the DAC
                                                                                         }// end while
#include "mbed.h"
#include <stdio.h>
                                                                                         return 0;
                                                                                      }// end main
#define PI 3.14159
#define F_SINE 100 // Hz
#define NUM_PTS 50
// Global HARDWARE Objects
// Create a DAC object, attached to A2
AnalogOut Pacer(A2);
int main(void) {
    // splash
    printf("dac_class_ex_2 - example for EE2905\n");
    printf("Using Mbed OS version %d.%d.%d\n\n",
            MBED_MAJOR_VERSION, MBED_MINOR_VERSION, MBED_PATCH_VERSION);
    // working variables
    float sine_ary[NUM_PTS];
    // array setup
    for (int i = 0; i < NUM_PTS; i++) {</pre>
        sine ary[i] = sin(i*(2*PI/NUM PTS))*.5 + 0.5;
    }// end for
```


```
// run through an endless series of conversions
   // write out a sine wave of variable frequency
   // the sin fn outputs -1 to +1 so we need to divide by 2 to get a
   // total swing of 1. Then need to offset by 0.5 to make everything
   // positive
   // Hardcoding 50 points for the sine wave
     for (int i = 0; i < NUM PTS; i++) {</pre>
        Pacer.write(sine_ary[i]);
       // 1000000 to convert to sec, 1/F sine for period,
       // with NUM PTS outputs / period
       wait_us(1000000*1.0/F_SINE/NUM_PTS);
   }// end for
```

- Simple example 2 part 2 frequency error
 - Explore ways to write to the DAC
 - Read from an array specify the frequency


Note: The frequency of the sine wave is ≈ 95Hz Not the programmed 100Hz

- Simple example 2 part 2 filtered output
 - Explore ways to write to the DAC
 - Read from an array specify the frequency

Note: Simple 1pole RC low pass filter

- Simple example 2 part 3 – maximum frequency
 - Explore ways to write to the DAC
 - Read from an array don't specify a frequency

8

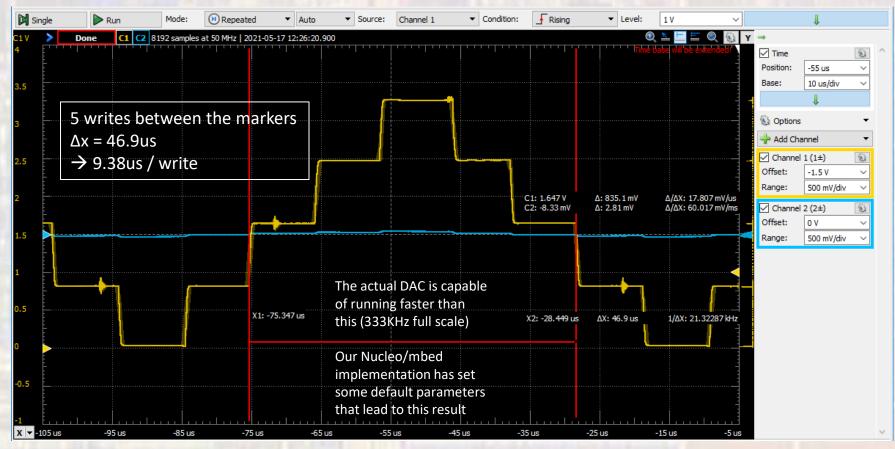
- Simple example 3
 - Estimate how long it takes to do a write to the DAC

// Write a series of values to the DAC with no

// intervening instructions

Pacer.write(0.0); Pacer.write(0.25); Pacer.write(0.5); Pacer.write(0.75);

Pacer.write(1.0); Pacer.write(0.75);


Pacer.write(0.5); Pacer.write(0.25);

```
// run through an endless series of conversions
// dac_class_ex_3 project
                                                                        while(1){
// created 5/12/21 by tj
// rev 0
// DAC example file for class
// Minimum write tim to the DAC
}// end while
#include "mbed.h"
                                                                        return 0;
#include <stdio.h>
                                                                        end main
#define T WAIT 100
                 // in us
// Global HARDWARE Objects
// Create a DAC object, attached to A2
AnalogOut Pacer(A2);
int main(void) {
   // splash
   printf("dac_class_ex_3 - example for EE2905\n");
   printf("Using Mbed OS version %d.%d.%d\n\n",
          MBED MAJOR VERSION, MBED MINOR VERSION, MBED PATCH VERSION);
```

EE 2905

- Simple example 3
 - Estimate how long it takes to do a write to the DAC

output

- Limitations summary
 - ~10us to write a new value to the DAC
 - Fastest 50 point sine wave → 50 x 10us / period = 500us/per → 2KHz
 - Error in 100Hz, 50 point sine wave
 - Period extension : (10us/10ms)x50 = 5.0%
 - 100Hz → 95Hz