Debounce

Last updated - 7/4/21

- When a button is pressed (or released) it often bounces
- This causes the pin associated with the button to oscillate between 0 and 1

- Under normal polling this is not an issue (why?)
- When using pin-interrupts this can cause multiple interrupts and un-intended "presses" or "releases"
- This problem is very complex
- There are hardware and software solutions
- Hardware solutions can be made very robust - but may not be practical (or available) on our board
- Software solutions are not 100% effective
- Any solution we choose has some failure mechanism

Note: typically the bouncing is resolved in less than a few milli-seconds

- Simple software based debounce solution
- We can check the pin, wait a few milli-seconds and check again
- If the pin is different we may be bouncing - do not update the value
- If the pin is the same we know we are not bouncing - "valid"
- Update the value with the new "valid" pin value

- Debounce section of an ISR - example

void increment_isr(void) \{
// interrupt service routine for counter clk
// debounces the pin and increments the cnt
// // Debounce section uint8_t pinval_1;
uint8_t pinval_2;
uint8_t valid;
// first check
pinval_1 = Increment.read();
// allow bounce to completa

if(pinval_1 == pinval_2)
valid = pinval_1;
//
//////////////////////////////////
///////////////////////////////////
// count update section
if(valid)
ent++;
//
/////////////////////////////////
return;
\} // end increment_isr

Valid set to 1 if button pressed Valid set to 0 if button not pressed (released)

- Debounce section of an ISR - example

InterruptIn called Increment

Valid set to 1 if button pressed (!) Valid set to 0 if button not pressed (released)

- Basic hardware solution - Adding a capacitor
- Slows down the transition and prevents bouncing
- Adds the cost of the capacitor

Assume 5 ms for debouncing AND 4 or 5 time constants to transition $\rightarrow \tau=R C=1 \mathrm{~ms}$ $\mathrm{C}=\mathrm{\tau} / \mathrm{R} \rightarrow \mathrm{C}=1 \mathrm{~ms} / 10 \mathrm{~K} \Omega=0.1 \mathrm{uF}=100 \mathrm{nF}=100,000 \mathrm{pF} \rightarrow 104$ marking

