EE 2905

Dr. Johnson

Homework 10

1 - Using a 10b DAC with a 3.3 V reference, calculate the following values 15 pts
A) Step size
B) binary DAC value for an output of 2.3 v
C) Output voltage if the DAC value is $0 \times 0 \mathrm{AA}$

2 - Using the code below - provide the following values assuming you are using our 3.3V mbed system

AnalogOut mydac(A2);
int main(void)\{
float foo;
uint16_t boo;
foo $=\overline{0} .35$;
boo $=0 \times 1234$;
what will the external voltage on pin A2 be after each line
mydac.write(foo);
mydac.write_u16(boo);

3 - An artificial limb joint uses a servo motor to control the movement of the joint. A PWM signal is used to control the motor. The PWM frequency must be 50 Hz , and the PWM pulse width (duty cycle) controls the angle of the motor(joint)
motor pulse
75 pts

PwmOut elbow_pwm(D3)
setup the motor and start at 0°
write a function to shake hands -3 shakes, $+/-10^{\circ}, 0.5 \mathrm{sec} /$ shake(up + down)

