
Interrupt Programming

Last updated 6/3/21



2 © tjEE 2905

Interrupt Programming

• Blocks that support interrupts
• Nucleo-L476RG  - Almost all blocks support interrupts
• ADC, Timers, Inputs, SPI, …

• Mbed only supports interrupts on a few blocks
• InterruptIn – interrupt on pin changes

• Timers – causes an interrupt after a specific time

• Ticker – Causes a repeated interrupt at a defined interval

• Mbed uses the default priorities
• No methods in Mbed to change priorities



3 © tjEE 2905

Interrupt Programming

• WARNING, WARNING, WARNING
• Interrupts should be made as fast as possible
• Other critical interrupts may be ignored during the current interrupt

• No printf

• No While(1)

• No wait, thread_sleep

• No complex processing

• Interrupts can only see global variables
• This is our exception to no global variables allowed

• Interrupt service routines (ISRs)
• Must return “void”

• Must not have any parameters

void my_isr(void)



4 © tjEE 2905

Interrupt Programming

• Interrupt programming steps
1. Define the interrupt object

2. Attach an ISR to the object

3. Write the ISR  – remember all the warnings



5 © tjEE 2905

Interrupt Programming

• InterruptIn Class – Input Pin Interrupts



6 © tjEE 2905

Interrupt Programming

• Constructors



7 © tjEE 2905

Interrupt Programming

• Member Functions (Methods)



8 © tjEE 2905

Interrupt Programming

• Operator Overloads



9 © tjEE 2905

• Simple example 1
• Use pin D4 interrupt to increment a counter

Interrupt Programming

L476RG

D4
Pin

Vcc

10KΩ

button



10 © tjEE 2905

Interrupt Programming

• Simple example 1
• Use pin D4 interrupt to increment a counter

1 press each loop starting here

Some loops have more than 1 increment – WHY?

Button/Switch Bounce



11 © tjEE 2905

Interrupt Programming

• Simple example 2
• Use pin D4 interrupt to increment a counter w/debounce

• In the ISR
• Read the pin value

• Wait long enough for any bouncing to stop
• Prevents additional interrupts from occuring

• Read the pin value again

• If the same – assume the input is valid
• Take whatever action the ISR is supposed to take

• Note: this is far from a perfect solution
• Use hardware debouncing for critical situations

1st reading 2nd reading

Wait time
no interrupts possible



12 © tjEE 2905

Interrupt Programming

• Simple example 2
• Use pin D4 interrupt to increment a counter w/debounce



13 © tjEE 2905

Interrupt Programming

• Simple example 2
• Use pin D4 interrupt to increment a counter w/debounce

1 press

1 press
2 presses

3 presses

4 presses

5 presses



14 © tjEE 2905

Interrupt Programming

• Simple example 3
• Estimate the context latency for an interrupt
• Create a main loop that forces a digital output low

• Use the ISR to toggle the output pin high

• Use a digital square wave input signal

• Compare the input signal to the output waveform

• The time from input rise to output rise is an estimate of the ISR 
entry latency

• The width of the output high pulse is an estimate of the ISR exit 
latency



15 © tjEE 2905

Interrupt Programming

• Simple example 3
• Estimate the Interrupt context switch times



16 © tjEE 2905

Interrupt Programming

• Simple example 3
• Estimate the Interrupt context switch times

Event to ISR Action
1.7 us (136 clks)

ISR Action to Main action
152 ns (12clks)

Special considerations 
with the test ???

Why the big difference ???


