EE2905 Lab 3: Input

Objectives

- Develop simple breadboard circuits
- Interface to Buttons and Switches
- Read from the console

Prelab	student check off
- Review the Reading User Input	\square
- Review the Digital Inputs slides	\square
- Review the Button Basics and Switch Basics slides	\square

Assignment

- Do not start the assignment portion of the lab before the lab class. We will walk through the first part of the lab.

Part 1: Modify the Button design we created to use two external push buttons and 3 LEDs. Buttons 1 and 2 should turn on LEDs 1 and 2 respectively when pushed. In addition, LED 3 should turn on when both buttons are pushed. Print the status of the buttons to the serial monitor on the same line every 0.25 sec .

$$
\text { Button Status: B1:0 B2: } 1 \quad \text { 1=pushed, } 0=\text { not pushed }
$$

Part 2: Create a console program that reads input from the user and prints the value of a resistor. Inputs will be read one at a time and assume a 4 band resistor configuration.
Only the value (no tolerance) will be calculated (3 bands entered)
You must create a single function to request and retrieve the band value!
Input format:
Please enter a numeric value for band X : 0 for black, 1 for brown, 2 for ... 9 for white

- See example format, output and required math.h library function below

Check Off

- Demo and document your LED program 50\%
- Demo and document your resistor program 50%

Checkoff due beginning of lab 4 class (in-person or via Teams chat)

Informal Lab Report: flow diagram(2), code(2), schematic - due beginning of lab 4.

You will need to use the pow function from the math.h library

> \#include <math.h>
> pow(base, exponent) evaluates as base ${ }^{\text {exponent }}$
> pow(10,3) evaluates to $10^{3}=1000$
> pow $(10$, foo $)$ evaluates to $10^{\text {foo }}=10000$ if foo $=4$

```
VI COM5 - Tera Term VT
lab3_part2
Using Mbed OS version 6.10.0
Please enter a numeric value for band 1:
@-black, 1-brown, 2-red, 3-orange, 4-yellow, 5-green, 6-blue, 7-violet, 8-grey, 9-white:
3
Please enter a numeric value for band 2:
g-black, 1-brown, 2-red, 3-orange, 4-yellow, 5-green, 6-blue, 7-violet, 8-grey, 9-white:
4
Please enter a numeric value for band 3:
0-black, 1-brown, 2-red, 3-orange, 4-yellow, 5-green, 6-blue, 7-violet, 8-grey, 9-white:
Resistance = 3400000 0hms
Please enter a numeric value for band 1:
0-black, 1-brown, 2-red, 3-orange, 4-yellow, 5-green, 6-blue, 7-violet, 8-grey, 9-white:
8
Please enter a numeric value for band 2:
0-black, 1-brown, 2-red, 3-orange, 4-yellow, 5-green, 6-blue, 7-violet, 8-grey, 9-white:
6
Please enter a numeric value for band 3:
0-black, 1-brown, 2-red, 3-orange, 4-yellow, 5-green, 6-blue, 7-violet, 8-grey, 9-white:
2
Resistance = 8600 0hms```

