EE2509 Lab6: Prologue

Biosignal Measurement

Key Principles:

- Biosignals are produced by the electrical activity that arises from the biological activity that takes place within different tissues and organs of the human body
 - EEG (brain) exchange of ions creates an electric potential change which creates a current and associated electric field that can be measured with electrodes – signals in the 0.1Hz – 150Hz range
 - EMG (muscle) depolarization and repolarization of muscle cell membranes creates an electric potential change which creates a current and associated electric field that can be measured with electrodes – signals in the 0 – 500Hz range
 - ECG, EKG (heart muscle) EMG focused on the heart

Simplified Process:

- Attach appropriate sensors to transduce the electric fields generated to electric signals (voltage)
- Capture the signals using A/D conversion
- Perform real time signal processing or store the sample and perform non-real time signal processing

Biosignal Generation

Key Principles:

- The electrical signals sent from the brain to various body structures can be mimicked using electronic devices and probes (transmitters).
 - EMS Electrical Muscle Stimulation causes muscles to contract, which in turn strengthens them or aids in healing
 - Pacemaker stimulates the heart muscles to contract (beat) if the heart rate becomes too low
 - o Defibrillator stimulates the heart to return to its normal rhythm

Simplified Process:

- Attach appropriate transmitters to the muscle
- Transmit the desired signal

EE2905 Lab 6: Analog Outputs

Objectives

- Use arrays
- Interface to speaker
- Use the PwmOut class
- Use the AnalogOut class

	student
Prelab	check off
Get a 4.7uF capacitor from the tech center	
Review the Speaker spec	
Review the PwmOut class slides	
Review the RC Circuits notes	
Review the Arrays class slides	
Review the AnalogOut class slides	

Assignment

Part 1: Create a program that uses the 10KΩ potentiometer to vary a PWM output's period. The

in and the second s		output of the PWM will be used to drive the speaker. Your design should support output
		frequencies of 20Hz to 15KHz.
and the second second	-	Print to the console: a) the potentiometer values in ohms, b) the PWM output frequency
		in Hz.
		Be sure to pick a rational duty cycle value
	· some · some some some some some so	Main should only control flow – each major process should be in its own function \Box
States and a	Whole program	
	Dart 2	

Part 2: Create a program that replicates / manipulates an analog waveform using a DAC output. Read an analog waveform and store 100 samples into an array. (RC rise/fall)

Allow the user to:

Replicate the waveform scaled from 0 to 1x

Invert the Reverse th Once the user resulting DAC	n has been captured, the
resulting DAC	

Use the analog discovery or a bench scope to show the DAC output waveform Key parameters:

R = 10KΩ, C = 4.7uF

Original signal sample rate = 250Hz

- DAC output repetition rate = 2Hz
- Capturing either the rising or falling RC (not both) your choice

You can read the input waveform only once

Main should only control flow – each major process should be in its own function

6	// function prototypes	
7	int get_mod(float * scale);	
8	<pre>void load_array(float the_array[]);</pre>	
9	void mod array(float in array[], float out array[], int mod val, float scale);	
0	void reverse array(float array in[], float array out[], float scale);	
1	void scale array(float array in[], float array out[], float scale);	
2	<pre>void invert array(float array in[], float array out[], float scale);</pre>	
3	<pre>void output_curve(float the_array[]);</pre>	

Main

Check Off

•	Demo and document your PWM program	50%
٠	Demo and document your DAC/waveform program	50%

Checkoff due beginning of Lab 7 (in-person or via Teams chat)

Informal Lab Report: flow diagram(2), code(2), schematic(2) - due beginning of Lab 7.