Memory Overview

Last updated 7/1/21

- Many Types of memory
 - Paper tape
 - Cards
 - Magnetic Tape
 - Floppy Disk
 - Hard Drive (Magnetic)
 - Optical Drive
 - Integrated Circuit Memory

- 2 Key Concepts for Integrated Circuit memory
 - ROM
 - ROM read only memory
 - fixed values memory cannot be changed
 - RAM
 - RAM random access (really R/W)
 - memory can be changed

Integrated Circuit Memory

- Non Volatile
 - Retains it's values even when power is removed
 - ROM
 - NAND and NOR Flash
 - EPROM, EEPROM

Volatile

- Loses its values when power is removed
- Static Retains value without any extra effort
 - Registers
 - SRAM Static RAM
- Dynamic Requires periodic refresh or values will degrade
 - DRAM Dynamic RAM
 - SDRAM Synchronous DRAM (DDR, DDR2, DDR3, DDR4, ...)

- Integrated Circuit Memory
 - Minimum logical element
 - 1 bit (b)
 - Has a logical value of '0' or '1'
 - Has a physical value of "vdd" or "gnd"
 - 5v, 3.3v, 2.4v, 1.8v, 1.2v
 - Minimum accessible storage element
 - 1- Byte (B)
 - 8 bits
 - Minimum Addressable element
 - 1 Word
 - Situational dependent length
 - 1B, 2B, 4B, 8B, 16B, ...

- Integrated Circuit Memory
 - Logical configuration
 - Long column of bytes
 - 1st address is "0"
 - Sometimes thought of as growing down
 - Sometimes thought of as growing up

8 bits Addr 0 Addr 1 Addr 2 Addr 3 1 Byte

© tj

- Integrated Circuit Memory
 - Even though we may not have stored anything in a specific memory location
 - It has a value
 - the value is likely random

8 bits Addr 0 Addr 1 Addr 2 Addr 3 1 Byte

EE 2905 7 © tj

Integrated Circuit Memory

Write

Provide Address and Data

- Write (addr 3, 01100110)
- Write (addr 7, 11010000)
- Write (addr 9, 00000000)

Note: Writing overwrites existing data

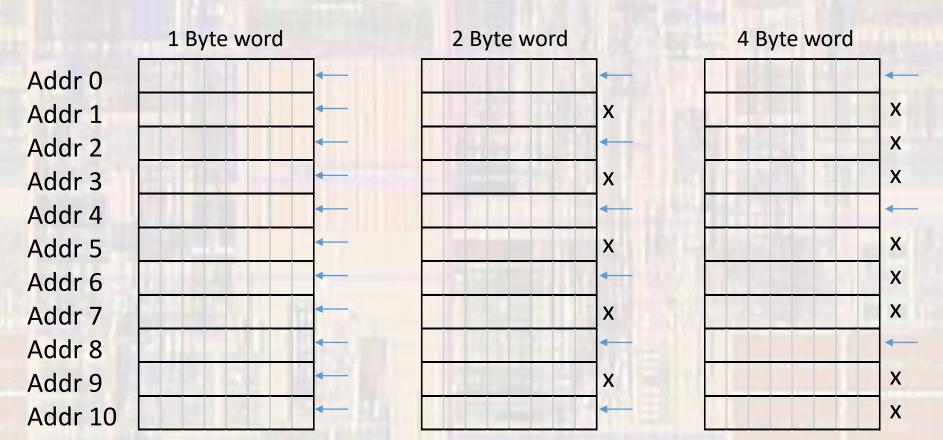
Integrated Circuit Memory

Read

Provide Address

- Read (addr 3) → 01100110
- Read (addr 7) → 11010000
- Read (addr 8) → ????????

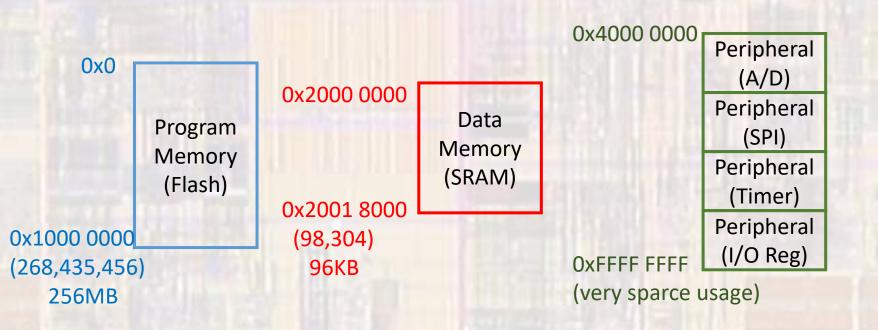
NOTE: Reading does not destroy the data


Addr 0								
Addr 1					F			
Addr 2								
Addr 3	0	1	1	0	0	1	1	0
34 446			Ť					
- Y49	1	1	0	1	0	0	0	0
e data	0	0	0	0	0	0	0	0

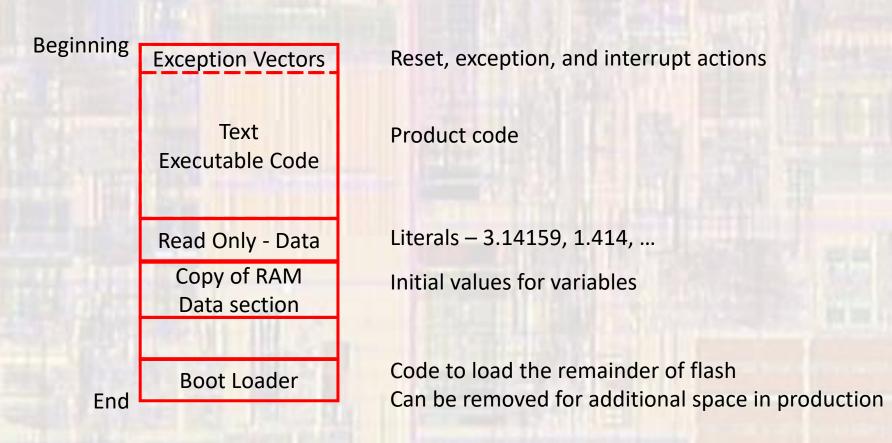
- Integrated Circuit Memory
 - Addresses
 - Addresses are NOT part of the memory array
 - Addresses are logic circuits to choose which part of the array to read from or write to – decoders determine the location

- Integrated Circuit Memory
 - Word Alignment
 - Processors work with data WORDS
 - Size of the internal registers
 - 1 Byte 8 bit processor
 - 2 Bytes 16 bit processor
 - 4 Bytes 32 bit processor
 - 8 Bytes 64 bit processor
 - Memory is word aligned
 - Must access the entire word
 - Not allowed/possible to access inside a word*

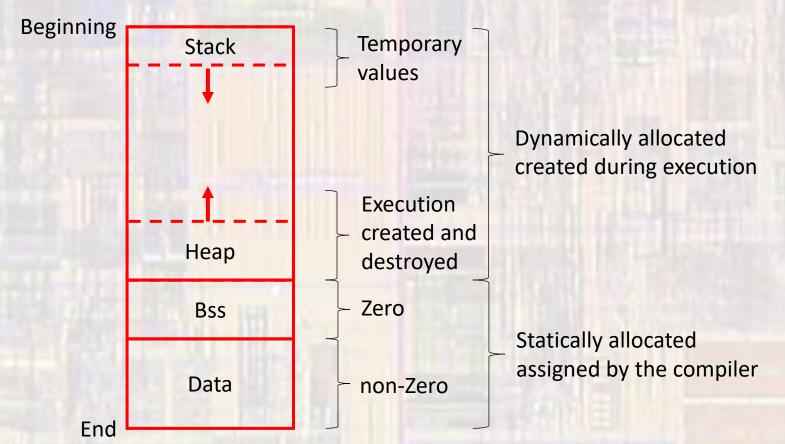
^{*} exceptions exist


- Integrated Circuit Memory
 - Word Alignment
 - Allowed addresses indicated by

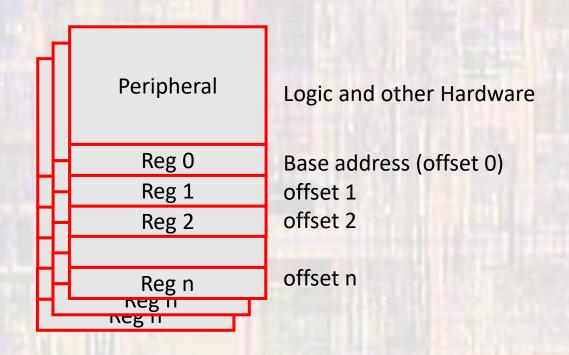
- Integrated Circuit Memory
 - Big-Endian vs Little-Endian
 - data value 0x12345678 in a 4 byte word



- Memory Mapped Architecture (embedded)
 - Treat memories and peripherals the same
 - Assign separate memory "spaces" to each type of storage
 - Some architectures include registers in memory map



STM32L47x memory map


- Program Memory (embedded)
 - Flash
 - Accessible Double Word format

- Data Memory (embedded)
 - Accessible in Byte, Half-Word, and Word format
 - Has some Bit level access

- Peripheral Memory (embedded)
 - 4 Bytes (Word) accesses

