
Last updated 6/23/21

- ADC Resolution
 - Nucleo-L476RG has two OpAmps
 - Mbed does not support the OpAmps
 - We will need to write our own low-level code
 - Our board does not allow us to use D0/D1
 - We only have access to OpAmp2

OpAmp Configuration

© tj

OpAmp Connections

- Nucleo-L476RG VINM, VINP, and VOUT connections are fixed
- Multiple steps are required to access the connections
 - Port(s) must be enabled (clocks enabled) PortA is enabled by default
 - Pins must be selected as Analog Inputs (using the Pin I/O configuration registers)

Table 150. Operational amplifier possible connections			
Signal	Pin	Internal	comment
OPAMP1_VINM	PA1 or dedicated pin ⁽¹⁾	OPAMP1_OUT or PGA	controlled by bits OPAMODE and VM_SEL.
OPAMP1_VINP	PA0	DAC1_OUT1	controlled by bit VP_SEL.
OPAMP1_VOUT	PA3	ADC1_IN8 ADC2_IN8	The pin is connected when the OPAMP is enabled. The ADC input is controlled by ADC.
OPAMP2_VINM	PA7 or dedicated pin ⁽¹⁾	OPAMP2_OUT or PGA	controlled by bits OPAMODE and VM_SEL.
OPAMP2_VINP	PA6	DAC1_OUT2	controlled by bit VP_SEL
OPAMP2_VOUT	PB0	ADC1_IN15 ADC2_IN15	The pin is connected when the OPAMP is enabled. The ADC input is controlled by ADC.

Table 150. Operational amplifier possible connections

 The dedicated pin is only available on BGA132 and BGA169 (for STM32L49x/L4Ax devices) package. This configuration provides the lowest input bias current (see datasheet).

- Simple example 1
 - OpAmp setup follower

```
// opamp_class_ex_1 project
// created 6/4/21 by tj
// rev 0
// OpAmp example file for class
// shows basic opamp operation
// also shows direct register access
finclude "mbed.h"
//#include <stdio.h>
int main(void) {
   printf("RCC: %x\n", RCC->AHB2ENR);
   setbuf(stdout, NULL); // disable buffering
   // splash
   printf("opamp_class_ex_1 - example for EE2905\n");
   printf("Using Mbed OS version %d.%d.%d\n\n",
           MBED MAJOR VERSION, MBED MINOR VERSION, MBED PATCH VERSION);
   // Using OPAMP2: PA6 as VINP, PA7 as VINM, PB0 as the output
   // Must enable PortA to access the opamp inputs
   // RCC AHB2ENR bit 0 for port A
   RCC \rightarrow AHB2ENR \mid = 0 \times 01;
   // Set VINP(PA6) and VINM(PA7) to analog in mode - 11 for bits 15-14 and 13-
   GPIOA->MODER |= 0x00000F000;
   // Must enable PortB to access the opamp output (??)
   // RCC AHB2ENR bit 1 for port B
```

// Enable opamp peripheral clock (common for both) // APB1 (high speed APB) // RCC APB1ENR1, 1 to bit 30 to enable RCC->APB1ENR1 |= 0x40000000;

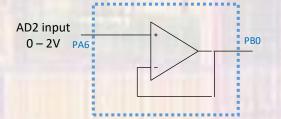
```
// Setup opamp values - follower mode
// VINP to GPIO, 0 to bit 10
// VINM - not used in this mode
// Follower mode - 11 to bits 3-2
// all others 0
OPAMP2->CSR = 0x000000C;
```

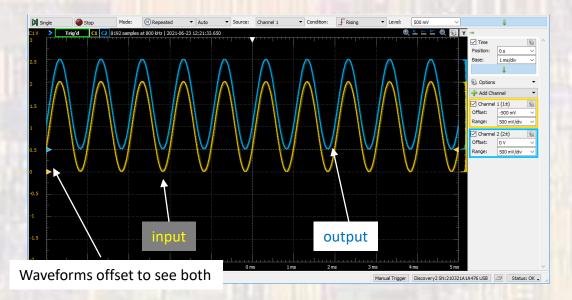
```
// Enable opamp
// enable - 1 to bit 0
OPAMP2->CSR |= 0x00000001:
```

```
while(1){
   // Nothing to do here
    // Printing to make sure we are operating
    printf("still running\n");
```

```
wait us(1000000);
```

```
return 0;
// end main
```


 $RCC \rightarrow AHB2ENR \mid = 0 \times 02;$


11

11

5

- Simple example 1 results
 - OpAmp setup follower

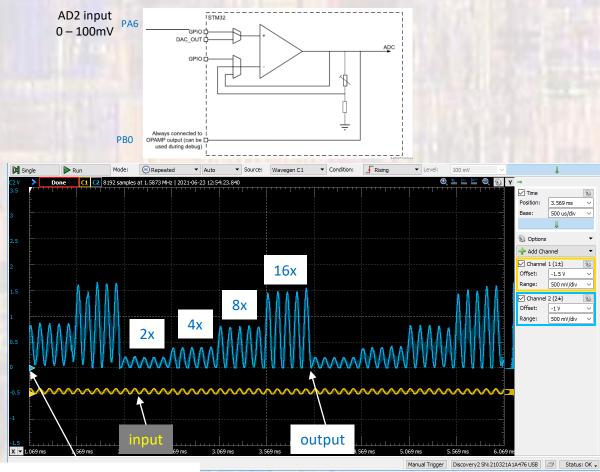
Simple example 2

OpAmp setup – programmable gain

```
// opamp class ex 2 project
// created 6/4/21 by tj
// rev 0
// OpAmp example file for class
// shows basic opamp operation - gain mode
// also shows direct register access
finclude "mbed.h"
//#include ≺stdio.h≻
int main(void) {
   printf("RCC: %x\n", RCC->AHB2ENR);
   setbuf(stdout, NULL); // disable buffering
   // splash
   printf("opamp class ex 2 - example for EE2905\n");
   printf("Using Mbed OS version %d.%d.%d\n\n",
           MBED MAJOR VERSION, MBED MINOR VERSION, MBED PATCH VERSION);
   // Using OPAMP2: PA6 as VINP, PA7 as VINM, PB0 as the output
   // Must enable PortA to access the opamp inputs
   // RCC AHB2ENR bit 0 for port A
   RCC->AHB2ENR |= 0x01;
   // Set VINP(PA6) and VINM(PA7) to analog in mode - 11 for bits 15-14 and 13-12
   GPIOA->MODER |= 0x00000F000;
   // Must enable PortB to access the opamp output (??)
   // RCC AHB2ENR bit 1 for port B
   RCC \rightarrow AHB2ENR = 0x02;
```

// Enable opamp peripheral clock (common for both)
// APB1 (high speed APB)
// RCC_APB1ENR1, 1 to bit 30 to enable
RCC->APB1ENR1 |= 0x40000000;

```
// Setup opamp values - internal gain mode
// VINP to GPIO, 0 to bit 10
// VINM - not used in this mode
// Internal gain 2-00, 4-01, 8-10, 16-11 bits 5-4
// internal gain mode - 10 to bits 3-2
// all others 0
// start with gain=2
OPAMP2->CSR = 0x00000008;
```


```
// Enable opamp
// enable - 1 to bit 0
OPAMP2->CSR |= 0x00000001;
```

```
while(1) {
    // Cycle throug varius gain values
    // Assume a 10KHz input (100us period)
    // Try to get 5 cycles at each gain
    // Printing to make sure we are operating
    OPAMP2->CSR = 0x00000009;
    wait_us(500);
    OPAMP2->CSR = 0x00000019;
    wait_us(500);
    OPAMP2->CSR = 0x00000029;
    wait_us(500);
    OPAMP2->CSR = 0x00000039;
    wait_us(500);
}
```

```
return 0;
// end main
```

7

- Simple example 2 results
 - OpAmp setup programmable gain

EE 2905

- Limitations
 - Only OpAmp 2 available to us
 - 3mV input offset spec
 - 1.6MHz Gain-Bandwidth