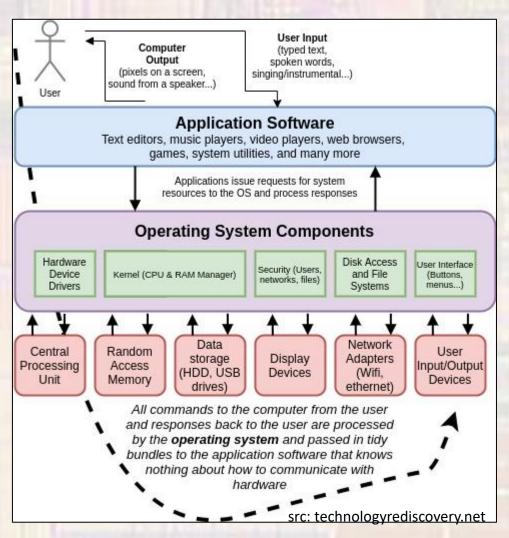
# Operating System (OS) Intro

## Last updated 6/3/22


- What is an Operating System
  - It's a Program
    - Starts before any user interaction is enabled
  - Controls access to hardware resources
    - Memory, A/D, SPI, ...
  - Schedules tasks for multiple "active" user programs
    - MS Word, Chrome, Outlook, ...
  - Schedules tasks for multiple "active" system programs
    - Hard drive access, user I/O, security

Basic OS Functions

Coordination between other software Coordination between users

Security Control over system performance Job accounting Error detecting aids

Processor Management Memory Management Device Management (incl. I/O) File Management



3

- Types of Operating Systems
  - Batch
    - Old school system users submit jobs(programs), jobs are prioritized and run in order
    - Still used in super-computer environments
    - Maximizes processor utilization
  - Time-sharing
    - Multiple programs are running in parallel (not really)
    - Each program gets a slice of time on the processor
    - Because of the high speed each program looks like it is running at the same time
    - Windows, OS-X, Android
  - Distributed / Networked
    - Multiple processors available (locally or in the cloud)
    - Programs are distributed by the OS

- Types of Operating Systems
  - Real Time (RTOS)
    - Provides specific Time or Delay responses
    - Required for systems that must react at a specific time or within a specific delay
      - Wireless communications
        - Requires the receiver to respond at a specific time interval
      - Robots, Industrial control, Automotive
        - Must carefully time actions to sensor inputs
    - Real time OS's are typically small
      - Makes them fast
      - Often used in non-real time situations to save memory

- Processes and Threads
  - Process
    - A program
    - Many processes can be "active"
      - Word, Email, Music, Clock ...
    - One process is "running" at a time (on one processor)
      - Start/Ready waiting to be assigned
      - Running actually running on the processor
      - Waiting waiting for its next opportunity(turn) to run on the processor
      - Terminated finished
  - Thread
    - One or more independent section(s) of code within a program
    - Spawned by a process (the program)
    - Threads share the process's resources
      - Sometimes called lightweight processes since multiple threads use less resources than multiple processes

- Process Scheduling
  - All active processes put into a waiting queue
  - Scheduling Policy
    - Round-Robin each process takes a turn
    - FIFO first process ready is the first executed (first in first out)
    - Priority highest priority process executes first
    - Combinations
  - Blocked process
    - Process that cannot continue
      - Waiting on I/O from user or hardware
    - The process is put in waiting mode and back into the queue

#### Process Scheduling

- Process SWAP
  - Managed by the OS
  - Switching from one process to another

#### Context Switch

- Managed by SW, HW, or both
- Actually stopping one process and starting another in the HW

#### Current process

- Save the current PC
- Save any register values
- Finish any memory writes
- Next process
  - Restore that process's PC
  - Restore any register values

- Memory Management
  - Process Swap
    - If necessary due to space limitations
    - Moves the current process memory from main memory to disk
    - Moves the new process memory from disk to main memory
  - Multiple processes in main memory
    - If multiple process fit
    - Makes sure each process knows where its memory is located
    - Prevents one process from entering another's space
  - More sophisticated memory management
    - Fragmentation support
    - Virtual memory
    - Segmentation

© tj

- Device Management
  - Device Drivers
    - Low level code to manage hardware on the processor
      - A/D, Timers, SPI, ...
    - Low level code to manage hardware attached to the processor
      - External memory, Accelerometer, Power management
    - Setup devices via Control Registers

/\* Configure IO Direction mode (Input, Output, Alternate or Analog) \*/
temp = GPIOx->MODER;
temp &= ~(GPIO\_MODER\_MODER0 << (position \* 2));
temp |= ((GPIO\_Init->Mode & GPIO\_MODE) << (position \* 2));
GPIOx->MODER = temp;

- Device Management
  - Resource management
    - Prevent multiple processes from accessing a device while it is actively being used by another process
      - P1 starts an A/D conversion
      - While P1 waits, P2 gets swapped in
      - P2 want to use the A/D but it is still working on the previous conversion
      - OS makes P2 wait
    - Resource synchronization methods
      - Mutex
      - Queue
      - Semaphore
      - Mail