
Last updated 6/7/21

- PWM Operation
 - Nucleo-L476RG uses timers to manage the PWM feature
 - At least 7 timers can be used for PWM generation
 - Only a few of these are enabled on our implementation

- PWM Connections
 - All the digital pins can be used for PWM generation ???
 - The compiler WILL NOT warn you if you use an incorrect pin

PwmOut Class

Public Member Functions		void	pulsewidth (float seconds)
	PwmOut (PinName pin)		Set the PWM pulsewidth, specified in seconds (float), keeping the period the same. More
	Create a PwmOut connected to the specified pin. More	void	pulsewidth_ms (int ms)
	PwmOut (const PinMap &pinmap)		Set the PWM pulsewidth, specified in milliseconds (int), keeping the period the same. More
	Create a PwmOut connected to the specified pin. More	void	pulsewidth_us (int us)
void	write (float value)		Set the PWM pulsewidth, specified in microseconds (int), keeping the period the same. More
	Set the output duty-cycle, specified as a percentage (float) More	int	read_pulsewitdth_us ()
float	read ()		Read the PWM pulsewidth. More
	Return the current output duty-cycle setting, measured as a percentage (float) More	void	suspend ()
void	period (float seconds)		Suspend PWM operation. More
	Set the PWM period, specified in seconds (float), keeping the duty cycle the same. More	void	resume ()
void	period_ms (int ms)		Resume PWM operation. More
	Set the PWM period, specified in milliseconds (int), keeping the duty cycle the same. More	PwmOut &	operator= (float value)
void	period_us (int us)		A operator shorthand for write() More
	Set the PWM period, specified in microseconds (int), keeping the duty cycle the same. More	PwmOut &	operator= (PwmOut &rhs)
int	read_period_us ()		A operator shorthand for write() More
	Read the PWM period. More		operator float ()
			An operator shorthand for read() More

Constructors

Public Member Functions

PwmOut (PinName pin)

Create a PwmOut connected to the specified pin. More...

PwmOut (const PinMap &pinmap)

Create a PwmOut connected to the specified pin. More...

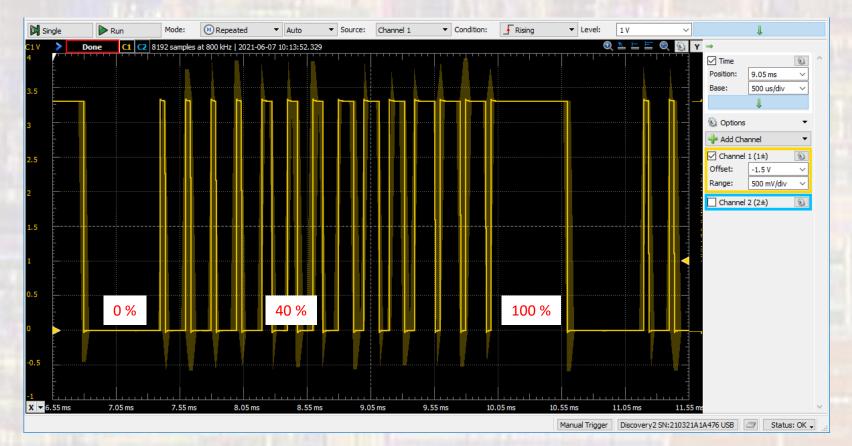
// Create PWM object attached to D4
PwmOut Pwm_a(D4);

Member Functions (Methods)

void	write (float value) 0.0 - 1.0 : (0% - 100% duty cycle	void	pulsewidth (float seconds)
	Set the output duty-cycle, specified as a percentage (float) More		Set the PWM pulsewidth, specified in seconds (float), keeping the period the same. More
float	read () 0.0 – 1.0 : (0% - 100% duty cycle	void	pulsewidth_ms (int ms)
	Return the current output duty-cycle setting, measured as a percentage (float) More		Set the PWM pulsewidth, specified in milliseconds (int), keeping the period the same. More
void	period (float seconds)	void	pulsewidth_us (int us)
	Set the PWM period, specified in seconds (float), keeping the duty cycle the same. More		Set the PWM pulsewidth, specified in microseconds (int), keeping the period the same. More
void	period_ms (int ms)	int	read_pulsewitdth_us ()
	Set the PWM period, specified in milliseconds (int), keeping the duty cycle the same. More		Read the PWM pulsewidth. More
void	period_us (int us)	void	suspend ()
	Set the PWM period, specified in microseconds (int), keeping the duty cycle the same. More		Suspend PWM operation. More
int	read_period_us ()	void	resume ()
	Read the PWM period. More		Resume PWM operation. More

// Initialize the PWM object
// using 50KHz for the PWM frequency
// and a 50% duty cycle
Pwm_a.period_us(200);
Pwm_a.write(0.5);

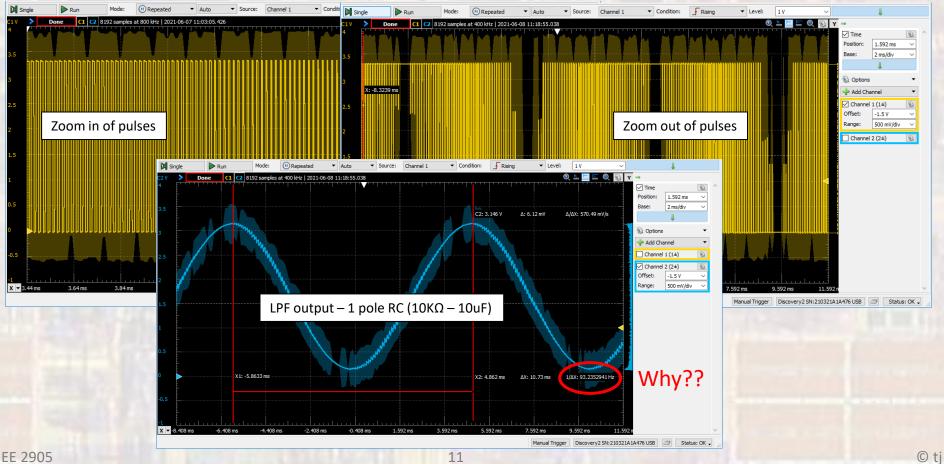
Operator Overloads


PwmOut &	operator= (float value)
	A operator shorthand for write() More
PwmOut &	operator= (PwmOut &rhs)
	A operator shorthand for write() More
	operator float ()
	An operator shorthand for read() More

// use the overload operator
Pwm_a = 0.5;

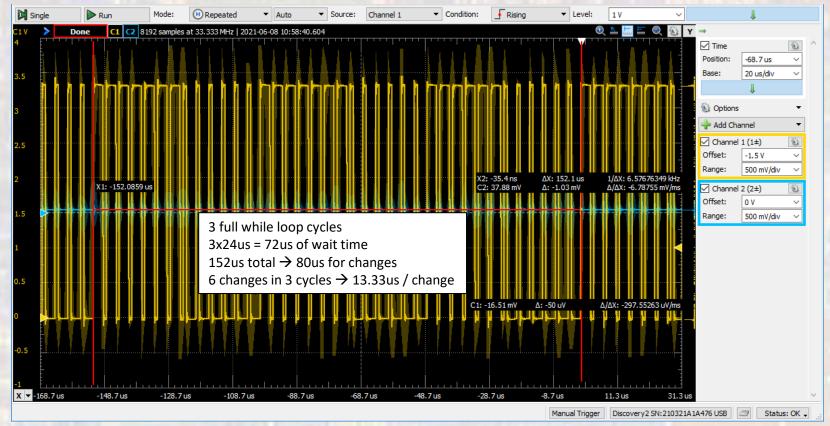
- Simple example 1
 - Generate a series of PWM output pulses
 - 3 pulses at 5 different pulse widths

```
// run through an endless series of duty cycles
                                                                                   while(1){
// pwm_class_ex_1 project
                                                                                      // generate some PWM outputs
                                                                                       for(int i = 0; i <= 5; i++) {</pre>
// created 6/4/21 by tj
                                                                                           Pwm a.write(i/5.0);
 // rev 0
                                                                                           wait us(T WAIT);
                                                                                       }// end for
                                                                                    // use the overload operator
                                                                               11
// PWM example file for class
                                                                               11
                                                                                    Pwm a = 0.5;
// shows basic PWM operation
                                                                                   }// end while
                                                                                   return 0;
                                                                                   end main
#include "mbed.h"
#include <stdio.h>
#define T WAIT 600
                     // in us
// Global HARDWARE Objects
// Create PWM object attached to D4
PwmOut Pwm a(D4);
int main(void) {
    setbuf(stdout, NULL); // disable buffering
    // splash
    printf("pwm_class_ex_1 - example for EE2905\n");
    printf("Using Mbed OS version %d.%d.%d\n\n",
            MBED_MAJOR_VERSION, MBED_MINOR_VERSION, MBED_PATCH_VERSION);
    // Initialize the PWM object
    // using 50KHz for the PWM frequency
    // and a 50% duty cycle
    Pwm a.period us(200);
    Pwm a.write(0.5);
```


- Simple example 1
 - Generate a series of PWM output pulses
 - 3 pulses at 5 different pulse widths

- Simple example 2
 - Generate a Sine wave
 - 10KHz PWM, 100Hz sinewave with 50 points

- Simple example 2
 - Generate a Sine wave
 - 10KHz PWM, 100Hz sinewave with 50 points



/ end main

- Simple example 3
 - Estimate PWM programming time
 - Measure time for a known # of programming cycles

```
// pwm_class_ex_3 project
// created 6/4/21 by tj
// rev 0
// PWM example file for class
// PWM delay estimate
#include "mbed.h"
#include <stdio.h>
// Global HARDWARE Objects
// Create PWM object attached to D4
PwmOut Pwm a(D4);
int main(void) {
   setbuf(stdout, NULL); // disable buffering
   // splash
   printf("pwm_class_ex_3 - example for EE2905\n");
   printf("Using Mbed OS version %d.%d.%d\n\n",
           MBED MAJOR VERSION, MBED MINOR VERSION, MBED PATCH VERSION);
   // Initialize the PWM object
   // using 250KHz for the PWM frequency
   // allows for lus min pulse width at 20% duty cycle
   Pwm_a.period_us(4);
   // run through an endless series of conversions
    while(1){
        // Toggle the duty cycle back and forth
       Pwm_a.write(0.25);
       wait_us(12);
       Pwm a.write(0.75);
       wait us(12);
    }// end while
    return 0:
```

- Simple example 3
 - Estimate PWM programming time
 - Measure time for a known # of programming cycles

- Limitations summary
 - It looks like the minimum pulse width is 1us
 - Need to account for this when setting frequency and duty cycle
 - PWM duty cycle programming time is approximately 14us
 - Checking Example 2:
 - 100Hz \rightarrow 10ms period
 - 50 writes / period = 700us
 - New period = 10.7ms → 93.46Hz (93.21Hz measured)

© tj