
Reading User Input

Last updated 7/8/21

2 © tjEE 2905

Reading User Input

Embedded Systems typically do not read user input

• We introduce reading from the console for 3 reasons
• For debugging our code

• To practice our programming (so we can see what’s happening)

• To prepare for general programming situations

3 © tjEE 2905

Reading User Input

• C has very powerful I/O capabilities

• Accessed by including the standard I/O library

#include <stdio.h>

Remember the < brackets > are used when accessing standard library elements

4 © tjEE 2905

Reading User Input

• Reading a variable is relatively simple

command: scanf()

format: “%type”, &variable the & indicates a pointer is being used

type: i→ int, f→ float, c→ char

Examples:

int ave;

scanf(“%i”, &ave); //reads from the keyboard and stores the value in ave

float foo;

scanf(“%f”, &foo); //reads from the keyboard and stores the value in foo

char initial;

scanf(“ %c”, &initial); //reads from the keyboard and stores the value in initial

// note the space before %c

5 © tjEE 2905

Reading User Input

• Each variable in a single scanf statement needs its
own format descriptor

int count;

float ave;

char month;

printf(“Enter an int for count, float for ave and character for month”);

scanf(“%i %f %c”, &count, &ave, &month);

6 © tjEE 2905

Reading User Input

• Using scanf() with characters can be tricky
• Spaces, characters, tabs, newlines are characters

scanf(“%c %c”, &foo, &boo);

expects an input like a b

scanf(“%c,%c”, foo, boo);

expects an input like a,b

if you enter a b scanf() will hang – waiting on the ,

if you enter a, b boo will have the value of a space

Placing a space before the % causes it to ignore any “whitespace”
characters (space, tab, newline)

