

#### Last updated 6/23/21

- Power Dissipation
  - Power dissipated in a part that is not provided to some load is converted into heat
    - Electrical Analogy
      - Temp (ΔT) <-> Voltage
      - Heat Flow (Q) <-> Current
      - Thermal Resistance (θ) <-> Electrical Resistance
      - Where Q corresponds to power dissipated



Power Dissipation



A regulator has a  $\theta = 50^{\circ}$ C/W

If it dissipates 1W in an area where the ambient temperature is 27°C

Its temperature will be:  $T_{part} = (Pd \times \theta) + T_A = (1W \times 50^{\circ}C/W) + 27^{\circ}C = 77^{\circ}C$ 

- Power Dissipation
  - Semiconductor devices are typically characterized by two thermal resistances
    - $\theta_{JC}$  thermal resistance from the junction to the case
    - $\theta_{CA}$  thermal resistance from the case to the ambient
    - Since most users do not care about the intermediate temperature
      - Often combined to be  $\theta_{JA}$

PD

• e.g.  $\theta_{JC} = 60^{\circ}C/W$ ,  $\theta_{CA} = 180^{\circ}C/W \rightarrow \theta_{JA} 240^{\circ}C/W$ 

T<sub>J</sub> – Junction Temperature

T<sub>A</sub> – Ambient Temperature

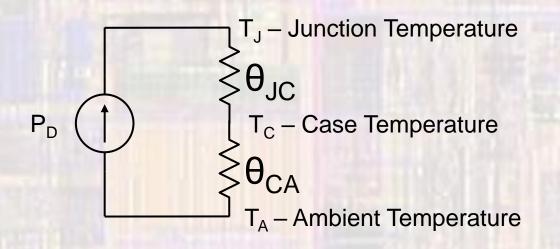
 $\theta_{JA}$ 

Power Dissipation

A regulator has a  $\theta_{JC} = 60^{\circ}$ C/W,  $\theta_{CA} = 180^{\circ}$ C/W and a  $T_{JMax} = 150^{\circ}$ C

If it dissipates 1W in an area where the ambient temperature is 27°C

Its junction temperature will be:  $T_J = (P_D \times (\theta_{JC} + \theta_{CA})) + T_A = (1W \times (60^{\circ}C/W + 180^{\circ}C/W) 27^{\circ}C = 267^{\circ}C$ 


- Power Dissipation
  - We can't impact the  $\theta_{JC}$  but we can impact  $\theta_{CA}$ 
    - Attach a heat sink
  - Heat Sink
    - By increasing the air-heat interface area heat sinks allow more heat to be dissipated faster
    - Reduce the effective thermal resistance





 $\theta_{CA} = 15 \text{ °C/W}$ 

Power Dissipation



A regulator has:  $\theta_{JC} = 60^{\circ}$ C/W,  $\theta_{CA} = 180^{\circ}$ C/W and  $T_{JMax} = 150^{\circ}$ C A heat sink is attached with  $\theta_{CA} = 15^{\circ}$ C/W

If it dissipates 1W in an area where the ambient temperature is 27°C

Its junction temperature will be:  $T_J = (P_D \times (\theta_{JC} + \theta_{CA})) + T_A = (1W \times (60^{\circ}C/W) + 15^{\circ}C/W) + 27^{\circ}C = 102^{\circ}C$