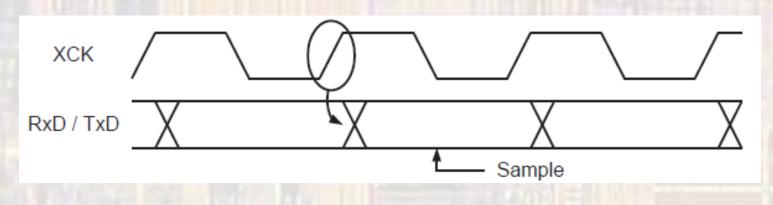
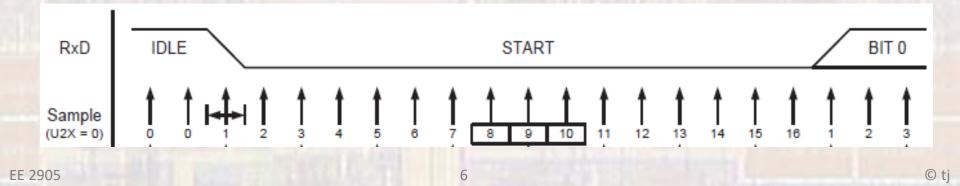

Universal Asynchronous Receiver / Transmitter Basics (UART)


Last updated 6/30/21

- UART/USART
 - Serial receiver / transmitter
 - Asynchronous and Synchronous versions
 - Asynchronous
 - 2 pin interface
 - RxD receive data pin
 - TxD transmit data pin
 - Clock recovery system
 - Synchronous
 - 3 pin interface
 - RxD receive data pin
 - TxD transmit data pin
 - Xck Clock PD4

- Frame
 - 1 start bit
 - 5, 6, 7, 8, or 9 data bits typically LSB first
 - none, even, or odd parity bit
 - 1 or 2 stop bits,
 - Overflow, Framing, Parity error detection



- Synchronous mode operation
 - Master creates clock signal
 - Xck max is typically Clk_{system}/4 for timing purposes
 - Master and Slave
 - Transmit on one clock edge
 - Receive (latch data) on the opposite clock edge

- Asynchronous mode operation
 - Transmit is unchanged
 - Xck is disabled
 - No Master or Slave
 - Must establish an agreed BAUD rate
 - Max BAUD rate is typically Clk_{system}/16
 - Limited by HW clock selection options
 - Fixed in SW
 - Start at known BAUD rate and agree to go faster/slower
 - Receiver circuitry includes:
 - Clock recovery block
 - Data recovery block

- Asynchronous mode operation
 - Clock and Data recovery
 - Internal clock at 16x BAUD rate
 - Sample RxD signal with internal clock
 - Detect Start bit falling edge
 - Sample RxD after 8,9,10 internal clocks
 - Majority determines bit value
 - Assuming a valid start all further bits sampled at multiples of 16 clocks

- Multi-processor mode
 - Multiple processors sharing the same USART signals
 - Use the last bit in the data (e.g. bit 9 when using 8 bit data) to indicate an address or data value is in the frame
 - If it is an address and it is your address, collect subsequent data frames
 - If it is not your address, ignore subsequent data frames

- Error detection
 - Parity
 - Create an error if parity is wrong
 - Overflow
 - Create an error if new data is ready to be sampled and the last data has not been read from the buffer yet
 - Double buffering is common
 - Frame error
 - Stop bit not detected when expected
 - Idle not detected when expected

Common BAUD rates

BAUD Rate	Bit Width	Frame Length start,8bit data, parity, 1 stop	Data Rate	
	(us)	(us)	(Bits/s)	(Bytes/s)
4800	208.33	2291.67	3,491	436
9600	104.17	1145.83	6,982	873
19200	52.08	572.92	13,964	1,745
38400	26.04	286.46	27,927	3,491
57600	17.36	190.97	41,891	5,236
115200	8.68	95.49	83,782	10,473