
Reading User Input

Last updated 6/21/21

2 © tjEE 2905

Reading User Input

• Most embedded systems do not read in user input in
the form of text or numbers
• Digital signals are typically used for input
• We will read user input to:

• Aid in out programming practice
• Debug our programs

• The input to a scanf() function is received from the
standard input “stream” (stdin)
• stdin in our case will be the Tera Term window

• The scanf() function halts our program until the
required input is provided
• Special care must be taken to prevent it from impacting the

timing of our programs

3 © tjEE 2905

Reading User Input

• User input must be stored in a variable

command: scanf()

argument: “%type”, &variable

type: i→ int, f→ float, c→ char

int ave;

scanf(“%i”, &ave); //reads 1 int from the keyboard and stores the value in ave

float foo;

scanf(“%f”, &foo); //reads 1 float from the keyboard and stores the value in foo

char initial;

scanf(“ %c”, &initial); //reads 1 char from the keyboard and stores the value in initial

// note the space before %c – more later

This is the location where a
variable of type will be read in -
% is a special character to indicate
the “type” follows next

This is the name of the variable where a
value of type will be stored -
& is a special character to indicate
we are using a pointer (more later)

4 © tjEE 2905

Reading User Input

• Each variable in a single scanf statement needs its
own format descriptor

Examples:

int count;

float ave;

char month;

printf(“Enter an int for count, float for ave and character for month”);

scanf(“%i %f %c”, &count, &ave, &month);

5 © tjEE 2905

Reading User Input

• The scanf() function is very sensitive
• Mismatch in type expected and type entered can lead to

odd errors

• scanf uses pointers to access the storage variables
• Don’t forget the &

