

- What we know
 - Red LED signal
 - Pattern of 1's and 0's
- First thoughts
 - Use our photo-sensor to capture the LED signal
 - Will not be 1/0 at the output of the photo-sensor \rightarrow A/D conversion
 - Set a threshold on the A/D output to determine if we have 1/0
 - This is often called a data slicer
 - Collect 1's and 0's until we have a letter (or a word)
 - Output the letter to the 7-segment display
- Early questions
 - Does our photo-sensor 'see' red LED light?
 - What threshold will we use for the data slicer?
 - How does the seven segment display work

VF [2]

IR

- **Red LED** •
 - 620 680 nm wavelength

ı	Electrical / Optical Characteristics at TA=25°C								
	Symbol	Parameter	Device	Тур.	Max.	Units	Test Conditions		
	λpeak	Peak Wavelength	Super Bright Red	660		nm	IF=20mA		
	λD [1]	Dominant Wavelength	Super Bright Red	640		nm	IF=20mA		
-	Δλ1/2	Spectral Line Half-width	Super Bright Red	20		nm	IF=20mA		
	С	Capacitance	Super Bright Red	45		pF	VF=0V;f=1MHz		

Super Bright Red

Super Bright Red

1.85

2.5

10

v

uA

- Photo-sensor •
 - 550nm vs desired 650nm

Туре	SEN-5001			
Light Resistance	@ 2FC	6 – 29		
(kohms)	@1FC	12 - 58		
R05 min. (kohms)	500			
Spectral Response	550nm			
Pmax (mW)	250			
Vmax (V)	250			

Forward Voltage

Reverse Current

F=20mA

VR = 5V

Chart for another sensor No chart in our spec

!!!! NEED TO VERIFY THIS WILL WORK

- LED Photosensor Experiment
 - Setup a 1/0 pattern on a red LED
 - Shine it at out photo-sensor
 - Measure the photo-sensor with an A/D to make sure we have enough difference between a 1 and a 0

```
// project_whole_class_BMP project
// created 7/26/21 by tj
// rev 0
// Whole class project
// detector characterization
// flash an led and measure response
#include "mbed.h"
#include <stdio.h>
// Global HARDWARE Objects
// Create an ADC object, attached to A3
AnalogIn Photodet(A3);
// Create a digital output to drive the led
DigitalOut Led out(D3);
int main det(void) {
   setbuf(stdout, NULL);
   // splash
   printf("Whole Class Project - detector test - example for EE2905\n");
   printf("Using Mbed OS version %d.%d.%d\n\n",
           MBED_MAJOR_VERSION, MBED_MINOR_VERSION, MBED_PATCH VERSION);
```

```
// local variables
  float add val;
  int i:
  // initialize the LED to off
  Led out = 0;
  adc val = 0;
  // continuously check the detector and provide output
  while(1){
      // take 5 measurements per 'bit'
      for(i = 0; i < 10; i++){</pre>
          adc val = Photodet.read();
          printf("%i - %f\n", Led out.read(), adc val);
          wait us(25000/10) // 40Hz -> 25ms loop with 10 samples / loop
      } // end for
      // toggle LED
      Led out = !Led out;
  }// end while
  return 0;
// end main
```

© ti

- LED Photosensor Experiment
 - Not a very strong signal from the sensor

• Need a better answer

- LED Photosensor Experiment
 - Switch from 10KΩ load resistor to a 1KΩ load resistor
 - 0.22 for 'on'
 - 0.82 for 'off'

• Set the data slicer threshold to 0.52

Need to keep an eye on this signal swing and sharpness

870086

- Resource Management
 - 1 analog input
 - 8 digital outputs
 - This is easy
 - A3, and D 8,9,10,11,12,13,14,15
 - If we had other components, we would need to avoid conflicts – e.g. MISO and a digital output, PWM pin and digital input, ...

- LED Photosensor Experiment
 - We now have a potential red LED interface circuit
 AND
 - a possible threshold value (0.52)

- Looking at the waveform we may want to 'oversample' the sensor to ensure better readings
 - Arbitrarily (for now) oversample at 5x
 - Make this modifiable in our solution

- Data Structure
 - After some analysis, the data structure has a pattern
 - The information is in the 1's, the 0's are delimiters
 - 1 → "dot"
 - 111 → "dash"
 - Space between dots and dashes (0) → "break"

Individual letters are separated By 3 0's in a row \rightarrow "letter"

Individual words are separated By 7 0's in a row \rightarrow "word"

Baud rate = 40Hz Each 1 or 0 lasts for 25ms

А	10111	•—	J	1011101110111	•	S	10101	•••
В	111010101	_•••	Κ	111010111	_• _	т	111	—
С	11101011101	_•_•	L	101110101	•—••	U	1010111	••—
D	1110101	_••	Μ	1110111		V	101010111	•••-
E	1	•	Ν	11101	_•	W	101110111	•——
F	101011101	•••	0	11101110111		Х	11101010111	_••_
G	111011101	——•	Ρ	10111011101	•——•	Y	1110101110111	_•
н	1010101	••••	Q	1110111010111	• _	Ζ	11101110101	••
T	101	••	R	1011101	•—•			

Amazing – we think in Morse Code !!!

- Improved Program Flow
 - Ensure sensor is sampled at a regular interval
 - Setup a Ticker
 - Use the Ticker ISR to sample sensor
 - Store the result into a global variable
 - Use the main loop to check the global variable for changes and take appropriate actions
 - As long as the main loop circulates faster than the sensor sample time we should get consistent results

- Improved Flow Diagram
 - Use a Ticker to sample the sensor

