
ARM M4 Peripherals

Last updated 7/8/19

2 © tjEE 2920

ARM M4 Peripherals

3 © tjEE 2920

ARM M4 Peripherals

• Core Peripherals

• SysTick

• System Control Block

• Memory Protection Unit

• Floating Point Unit

• Debug Peripherals

• Nested Vector Interrupt Controller(in interrupts notes)

4 © tjEE 2920

ARM M4 Peripherals

• Systick

• Integrated system timer (counter)

• 24-bit - clear-on-write (reloads)

• Decrementing

• Wrap-on-zero

Reload Value
Max value - 16,777,215

co
u

n
t wrap

Write
(clear)

time

5 © tjEE 2920

ARM M4 Peripherals

• Systick
• Applications

• An RTOS tick timer that fires at a programmable rate (for example,
100 Hz) and invokes a SysTick routine.

• A high-speed alarm timer using the system clock.

• A variable rate alarm or signal timer—the duration is range-
dependent on the reference clock used and the dynamic range of
the counter.

• A simple counter used to measure time to completion and time
used.

• An internal clock source control based on missing/meeting
durations.

• The COUNT bit in the STCSR control and status register can be used
to determine if an action completed within a set duration, as part of
a dynamic clock management control loop

6 © tjEE 2920

ARM M4 Peripherals

• Systick

SysTick -> CTRL
LOAD
VAL
CALIB

1. Program the value in the STRVR register.
2. Clear the STCVR register by writing to it with any value.
3. Configure the STCSR register for the required operation.

7 © tjEE 2920

ARM M4 Peripherals

• Systick – Control Register SysTick -> CTRL

8 © tjEE 2920

ARM M4 Peripherals

• Systick – Reload Value Register SysTick -> LOAD

9 © tjEE 2920

ARM M4 Peripherals

• Systick – Current Value Register

Note: Writing anything to this register clears the count

SysTick -> VAL

10 © tjEE 2920

ARM M4 Peripherals

• Systick – Calibration Register SysTick -> CALIB

11 © tjEE 2920

ARM M4 Peripherals

• SysTick Example
int Delay_48MHz_us(uint32_t val){

// input checking
// max input is 349,524
if (val > 349524){

printf("\nDelay_48MHz_us delay out of bounds %i\n", val);
exit(1);

}

// Local Variables
// These values are used to timeout the transitions
uint32_t delay_cnt;

// Calculate the required number of clock cycles
// 48MHz --> 20.8333ns/clk
// # of clocks per us = 1e-6 * 48e6 = 48
// required number of clocks = val * clks/us
delay_cnt = val * 48;

// Setup the systick timer
SysTick->CTRL = 0x0005; // set clk to CPU clk (bit 2) and enable (bit 0)
SysTick->LOAD = delay_cnt;
SysTick->VAL = 0x0;

// Wait
while(!(SysTick->CTRL & 0x00010000))
;

// Done waiting
return 0;
} // end Delay_48MHz_us

12 © tjEE 2920

ARM M4 Peripherals

• System Control Block – SCB

• Access to a range of system level registers

13 © tjEE 2920

ARM M4 Peripherals

• SCB - Registers

SCB->CPUID
…

SCB->SHP[1] – SHP[3]

SCB->PFR[0 – PFR[1]

SCB->MMFR[0 – MMFR[3]

SCB>ISAR[0] - ISAR[4]

14 © tjEE 2920

ARM M4 Peripherals

• SCB – CPU ID Register
SCB->CPUID

15 © tjEE 2920

ARM M4 Peripherals

• SCB – Interrupt Control State Register

…

SCB->ICSR

16 © tjEE 2920

ARM M4 Peripherals

• Memory Protection Unit – MPU

• The MPU breaks the processor memory into 8 logical
regions

• Each region has settings to:
• Set start address and size

• Limit access (privilege)

• Set as bufferable

• Set as cacheable

• Set as non-executable

17 © tjEE 2920

ARM M4 Peripherals

• MPU - Privilege
• Program memory, data memory, and peripheral access

limitations

• Operating System (privileged)
• Access to all of program memory and data memory
• Access to all peripherals

• Application Program A (unprivileged)
• Access to portions of program memory and data memory
• Access to some peripherals

• Application Program B (unprivileged)
• Access to portions of program memory and data memory
• Access to some peripherals

18 © tjEE 2920

ARM M4 Peripherals

• MPU - Registers MPU->TYPE
…

19 © tjEE 2920

ARM M4 Peripherals

• Floating Point Unit – FPU
• 32-bit instructions for single-precision (C float) data-

processing operations

• Combined multiply and accumulate instructions for
increased precision (Fused MAC)

• Hardware support for conversion, addition, subtraction,
multiplication with optional accumulate, division, and
square root

• Hardware support for denormals and all IEEE rounding
modes

• 32 dedicated 32-bit single-precision registers, also
addressable as 16 double-word registers

• Decoupled three stage pipeline

20 © tjEE 2920

ARM M4 Peripherals

• Floating Point Unit – FPU
• Extended Register Set
• Sixteen 64-bit double-word registers, D0-D15

• Thirty-two 32-bit single-word registers, S0-S31

• A combination of registers from the above views

• The FPU is disabled from reset. You must enable it before
you can use any floating-point instructions.
• In many compilers, such as in TI's Code Composer Studio IDE, if the

hardware FPU option is selected in the compiler setting, the
initialization code enables the FPU before entering the main()
function. In this case, users do not need to manually turn on the
FPU in the main application code.

• The processor must be in privileged mode to read from and write to
the Coprocessor Access Control (CPAC) register – see the spec for
details

21 © tjEE 2920

ARM M4 Peripherals

• Floating Point Unit – Registers

FPU->FPCCR
…
FPU->MVFR1

22 © tjEE 2920

ARM M4 Peripherals

• Debug Peripherals
• FPB - Flash Patch and Breakpoint
• Causes flashed code to be re-directed to a different location

• Causes flashed code to cause a breakpoint in hardware

• DWT – Data Watchpoint and Trace
• Hardware triggers

• Data Address triggers

• PC Sampler Triggers

• ITM – Instrumentation Trace Macrocell

TPIU – Trace Port Interface Unit
• Provide printf style debugging to an output stream

• JTAG – Joint Test Action Group

SWD – Serial Wire Debug
• Access to the debug peripherals

23 © tjEE 2920

ARM M4 Peripherals

24 © tjEE 2920

Watchdog Timer

• Basic Watchdog Function

• What happens if your code gets trapped in a loop or runs
off into the weeds?

• Checks to make sure your software is running

• Count up timer that creates a system reset if it gets to a
programmed value

• System software must periodically reset the timer to
prevent it from activating a system reset

25 © tjEE 2920

Watchdog Timer

• MSP432 Watchdog Timer
• ARM (AMBA Compliant) timer

• 32 bit timer

• Password protected
• Any violation results in a

system reset

• Can be configured as an

interval counter

• COUNT UP TIMER

26 © tjEE 2920

Watchdog Timer

• MSP432 Watchdog Timer

27 © tjEE 2920

Watchdog Timer

• MSP432 Watchdog Timer

• Password Protection
• 16 bit control register

• Uses special instruction to access

• Upper byte must be 0x5A (password) for writes

• Upper byte returns 0x69 for reads

• Any incorrect instruction access → system reset

• Any incorrect password → system reset

28 © tjEE 2920

Watchdog Timer

• MSP432 Watchdog Timer

• Reset Defaults
• WD Timer not active

• Count set to 215

• Clock source set to SMCLK

29 © tjEE 2920

Watchdog Timer

• MSP432 Watchdog Timer

• Interval Timer Mode
• Count up counter

• Sets a flag or creates an interrupt when the programmed count is
reached

30 © tjEE 2920

Watchdog Timer

• MSP432 Watchdog Timer

• Watchdog Control Register WDT_A->CTL

31 © tjEE 2920

Watchdog Timer

• MSP432 Watchdog Timer
• Watchdog Control Register

32 © tjEE 2920

Watchdog Timer

• MSP432 Watchdog Timer
• Example

/*
* wdt_example.c
*
* Created on: Jul 24, 2018
* Author: johnsontimoj
*/

/////////////////////////
//
// example file for showing watch dog timer operation
//
// kills a counting program after a period of time
//
// inputs: none
// outputs: count and failure
//
///////////////////////////

// includes
#include "msp.h"
#include <stdio.h>

int main(void){

// setup watchdog
// 0101 1010 0 0 0 0 010
// password hold off sm clk wd mode no clr 2**23 cnts(~8M clocks)
WDT_A->CTL = 0x5A02;

int i;
for(i = 0; i<20; i++){

printf("count is %i\n", i);
__delay_cycles(1000000);

}

return 0;
}

WD Timer resets
the processor

33 © tjEE 2920

Watchdog Timer

• MSP432 Watchdog Timer
• Example // includes

#include "msp.h"
#include <stdio.h>

int main(void){

// setup watchdog
// 0101 1010 0 0 0 0 010
// password hold off sm clk wd mode no clr 2**23 cnts(~8M clocks)
WDT_A->CTL = 0x5A02;

int i;
for(i = 0; i<20; i++){

// clear timer
// returns 0x69xx, need to write 0x5Ax(1bbb)
// turn off bits 1 in 6, 0 in 9
// turn on bits 0 in 5, bit 1 in A
// turn on bit 3 in lsb nibble
WDT_A->CTL = (WDT_A->CTL & ~0x2100) | 0x1208;

printf("count is %i\n", i);
__delay_cycles(1000000);

}

return 0;
}

Resets the WD timer

