Last updated 6/17/19

- IC Specifications
 - Integrated circuit performance varies:
 - Part to part
 - Die to die
 - Wafer to wafer
 - Lot to lot
 - machine to machine
 - Over temperature
 - Over voltage
 - With load
 - Over time

- IC Specifications
 - Performance is guaranteed:
 - By design
 - By test
 - Wafer level
 - Part level
 - Accelerated life
 - Statistically
 - Use guard banding
 - Must be careful not to multiply effects

Absolute Maximum Ratings

5.1 Absolute Maximum Ratings⁽¹⁾

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

	MIN	MAX	UNIT
Voltage applied at DVCC and AVCC pins to V _{SS}	-0.3	4.17	V
Voltage difference between DVCC and AVCC pins ⁽²⁾		±0.3	V
Voltage applied to any pin ⁽³⁾	-0.3	V _{CC} + 0.3 V (4.17 V MAX)	V
Diode current at any device pin		±2	mA
Storage temperature, T _{stg} ⁽⁴⁾	-40	125	°C
Maximum junction temperature, T _J		95	°C

Stresses beyond those listed under *Absolute Maximum Ratings* may cause permanent damage to the device.

These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under *Recommended Operating Conditions* is not implied.

Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

Absolute Maximum Ratings

- Temperature Ranges
- Commercial
- Industrial
- Automotive
- Military

0°C to 85°C -40°C to 100°C -40°C to 125°C -55°C to 125°C

°C	۴
150	302
125	257
100	212
85	185
25	77
0	32
-40	-40
-55	-67
-65	-85

32°F to 185°F -40°F to 212°F -40°F to 257°F -67°F to 257°F

** These are not necessarily ambient temperature

Absolute Maximum Ratings

Electro-Static Discharge

5.2 ESD Ratings

			VALUE	UNIT
V	Electrostatic discharge	Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001 ⁽¹⁾ (2)	±1000	V
V(ESD)	Electrostatic discharge	Charged-device model (CDM), per JEDEC specification JESD22-C101 ⁽³⁾	±250	v

Nominal Operating Conditions

5.3 Recommended Operating Conditions

Typical data are based on V_{CC} = 3.0 V, T_A = 25°C (unless otherwise noted)

			MIN	NOM	MAX	UNIT
		At power-up (with internal V_{CC} supervision)	1.71		3.7	
V _{cc}	Supply voltage range at all DVCC and AVCC pins $^{(1)}$ $^{(2)}$ $^{(3)}$	Normal operation with internal V_{CC} supervision	1.71		3.7	V
		Normal operation without internal V_{CC} supervision	1.62		3.7	
V _{SS}	Supply voltage on all DVSS and AVSS p	ins		0		V
IINRUSH	Inrush current into the V _{CC} pins ⁽⁴⁾				100	mA
f _{MCLK}	Frequency of the CPU and AHB clock in	the system ⁽⁵⁾	0		48	MHz
T _A	Operating free-air temperature		-40		85	°C
TJ	Operating junction temperature		-40		85	°C

Current Consumption

5.10 Current Consumption in LDO-Based Active Modes – Dhrystone 2.1 Program

over recommended operating free-air temperature (unless otherwise noted)^{(1) (2) (3) (4) (5)}

PARAMETER	EXECUTION	V _{cc}	MCLK =	1 MHz	MCLK =	8 MHz	MCLI 16 M	K = Hz	MCLI 24 M	(= Hz	MCLI 32 M	K = Hz	MCLI 40 M	K = Hz	MCLI 48 M	K = Hz	UNIT
	MEMORI		TYP	MAX	TYP	MAX	TYP	MAX	TYP	MAX	TYP	MAX	TYP	MAX	ТҮР	MAX	
(6) (7) (8)	Flash	3.0 V	490	625	1500	1700	2650	2950	3580	3900							μA
(6) (7) (8) AM_LDO_VCORE1,Flash	Flash	3.0 V	510	685	1650	1900	2970	3300	4260	4700	5300	5800	6500	7100	7700	8400	μΑ
IAM_LDO_VCORED,SRAM	SRAM	3.0 V	435	565	1070	1240	1800	2010	2530	2800							μA
AM_LDO_VCORE1,SRAM	SRAM	3.0 V	450	620	1160	1370	1980	2250	2800	3120	3650	4020	4470	4900	5280	5760	μA

5.11 Current Consumption in DC-DC-Based Active Modes – Dhrystone 2.1 Program

over recommended operating free-air temperature (unless otherwise noted)^{(1) (2) (3) (4) (5)}

PARAMETER		Vcc	MCLK =	1 MHz	MCLK =	8 MHz	MCLI 16 M	K = Hz	MCLI 24 M	(= Hz	MCLI 32 M	K = Hz	MCLI 40 M	K = Hz	MCLI 48 M	(= Hz	UNIT
	MEMORI		TYP	MAX	TYP	MAX	TYP	MAX	TYP	MAX	TYP	MAX	ТҮР	MAX	TYP	MAX	
I_AM_DCDC_VCORED,Flash (6) (7) (8)	Flash	3.0 V	400	475	925	1050	1530	1720	2060	2300							μA
I_AM_DCDC_VCORE1,Flash (6) (7) (8)	Flash	3.0 V	430	550	1100	1280	1880	2140	2650	3000	3290	3700	4020	4500	4720	5300	μA
AM_DCDC_VCORED,SRAM	SRAM	3.0 V	370	450	680	780	1040	1180	1410	1600							μA
IAM_DCDC_VCORE1,SRAM ⁽⁹⁾	SRAM	3.0 V	390	510	790	940	1250	1440	1720	1960	2200	2480	2670	3000	3050	3420	μA

Current Consumption

5.12 Current Consumption in Low-Frequency Active Modes – Dhrystone 2.1 Program

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)^{(1) (2) (3) (4) (5)}

DADAMETED	EXECUTION	V	-40	°C	25	°C	60 °	°C	85°	C	
FARAINETER	MEMORY	VCC	TYP	MAX	TYP	MAX	TYP	MAX	TYP	MAX	UNIT
(6) (7) (8)	Flach	2.2 V	75		80		95		115		A
AM_LF_VCORE0, Flash	FIdSIT	3.0 V	78		83	100	98		118	200	μА
(6) (7) (8)	Fleeb	2.2 V	78		85		105		125		
AM_LF_VCORE1, Flash	Flash	3.0 V	81		88	110	108		128	245	μА
. (9)	SDAM	2.2 V	68		73		90		105		A
AM_LF_VCORE0, SRAM	SNAW	3.0 V	71		76	92	93		108	190	μА
. (9)	SDAM	2.2 V	70		77		98		117		
'AM_LF_VCORE1, SRAM \"	SRAM	3.0 V	73		90	102	101		120	235	μА

Current Consumption

5.13 Typical Characteristics of Active Mode Currents for CoreMark Program

Current Consumption

5.23 Current Consumption of Digital Peripherals

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)⁽¹⁾

PARAMETER	TEST CONDITIONS	TYP	MAX	UNIT
I _{TIMER_A}	Timer_A configured as PWM timer with 50% duty cycle	5		µA/MHz
I _{TIMER32}	Timer32 enabled	3.5		µA/MHz
IUART	eUSCI_A configured in UART mode	6.5		µA/MHz
I _{SPI}	eUSCI_A configured in SPI master mode	5		µA/MHz
I _{I2C}	eUSCI_B configured in I ² C master mode	5		µA/MHz
I _{WDT_A}	WDT_A configured in interval timer mode	6		µA/MHz
I _{RTC_C}	RTC_C enabled and sourced from 32-kHz LFXT	100		nA
I _{AES256}	AES256 active	19		µA/MHz
I _{CRC32}	CRC32 active	2		µA/MHz

(1) Measured with VCORE = 1.2 V

- DC Characteristics
 - Inputs

Table 5-22. Digital Inputs (Applies to Both Normal and High-Drive I/Os)

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	Vcc	MIN	ТҮР	MAX	UNIT
v	Desitive asian input threshold valtage		2.2 V	0.99		1.65	v
VIT+	Positive-going input threshold voltage		3 V	1.35		2.25	v
v	Negative going input threshold veltage		2.2 V	0.55		1.21	v
VIT-	Negative-going input threshold voltage		3 V	0.75		1.65	v
v	Input voltage hystoregia ()/)/)		2.2 V	0.32		0.84	v
Vhys	Input voltage hysteresis (v _{IT+} – v _{IT-})		3 V	0.4		1.0	v
R _{Pull}	Pullup or pulldown resistor	For pullup: $V_{IN} = V_{SS}$, For pulldown: $V_{IN} = V_{CC}$		20	30	40	kΩ
C _{I,dig}	Input capacitance, digital only port pins	VIN = VSS or VCC			3		pF
C _{I,ana}	Input capacitance, port pins shared with analog functions	$V_{IN} = V_{SS}$ or V_{CC}			5		pF
l _{ikg,ndio}	Normal I/O high-impedance input leakage current	See (1)(2)	2.2 V, 3 V			±20	nA
l _{ikg,hdio}	High-drive I/O high-impedance input leakage current	See (1)(2)	2.2 V, 3 V			±20	nA

- DC Characteristics
 - Outputs

Table 5-23. Digital Outputs, Normal I/Os

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	Vcc	MIN	MAX	UNIT
		$I_{(OHmax)} = -1 \text{ mA}^{(1)}$	221	V _{CC} - 0.25	Vcc	
v	High level output voltage	$I_{(OHmax)} = -3 \text{ mA}^{(2)}$	2.2 V	V _{CC} - 0.60	Vcc	v
∨он	High-level output voltage	$I_{(OHmax)} = -2 \text{ mA}^{(1)}$	2.0.1/	V _{CC} - 0.25	Vcc	v
		$I_{(OHmax)} = -6 \text{ mA}^{(2)}$	3.0 V	V _{CC} - 0.60	Vcc	
		$I_{(OLmax)} = 1 \text{ mA}^{(1)}$	221	V _{SS}	V _{SS} + 0.25	
v	Low lovel output veltage	$I_{(OLmax)} = 3 \text{ mA}^{(2)}$	2.2 V	V _{SS}	V _{SS} + 0.60	v
Vol	Low-level output voltage	Low-level output voltage $I_{(OLmax)} = 2 \text{ mA}^{(1)}$	2.0.1/	V _{SS}	V _{SS} + 0.25	v
		$I_{(OLmax)} = 6 \text{ mA}^{(2)}$	3.0 V	V _{SS}	V _{SS} + 0.60	

- DC Characteristics
 - Outputs

- DC Characteristics
 - VRef

	PARAMETER	TEST CONDITIONS	Vcc	MIN	ТҮР	MAX	UNIT
		REFVSEL = {0} for 1.2 V, REFON = 1	1.62 V		1.2	±1%	
V _{REF+}	Positive built-in reference voltage output	REFVSEL = {1} for 1.45 V, REFON = 1	1.75 V		1.45	±1%	V
	Vollage output	REFVSEL = {3} for 2.5 V, REFON = 1	2.8 V		2.5	±1%	
	AVCC minimum voltage.	REFVSEL = {0} for 1.2 V		1.62			
AV _{CC(min)}	Positive built-in reference	REFVSEL = {1} for 1.45 V		1.75			v
	active	REFVSEL = {3} for 2.5 V		2.8			
I _{REF+}	Operating supply current into AVCC terminal ⁽¹⁾	REFON = 1	3 V		15	20	μA

AC Characteristics

• Outputs

1		[(Outlines)	1			
			1.62 V	24		
f _{Px.y}	Port output frequency (with RC load) ⁽³⁾	VCORE = 1.4 V, C _L = 20 pF, R _L ^{(4) (5)}	2.2 V	24		MHz
	load)		3.0 V	24		
			1.62 V	40%	60%	
d _{Px.y}	Port output duty cycle (with RC Load)	VCORE = 1.4 V, C _L = 20 pF, R _L ^{(4) (5)}	2.2 V	40%	60%	
	2000,		3.0 V	45%	55%	
			1.62 V	24		
fPort_CLK	Clock output frequency ⁽³⁾	VCORE = 1.4 V, C _L = 20 pF ⁽⁵⁾	2.2 V	24		MHz
			3.0 V	24		
			1.62 V	40%	60%	
d _{Port_CLK}	Clock output duty cycle	VCORE = 1.4 V, C _L = 20 pF ⁽⁵⁾	2.2 V	40%	60%	
			3.0 V	45%	55%	
			1.62 V		8	
t _{rise,dig}	Port output rise time, digital only port pins	$C_L = 20 \text{ pF}^{(6)}$	2.2 V		5	ns
	portpino		3.0 V		3	
			1.62 V		8	
t _{rall,dig}	Port output fall time, digital only port pins	C _L = 20 pF ⁽⁷⁾	2.2 V		5	ns
	port pino		3.0 V		3	
			1.62 V		8	
t _{rise,ana}	Port output rise time, port pins with shared analog functions	C _L = 20 pF ⁽⁶⁾	2.2 V		5	ns
	marcharos analog fareacho		3.0 V		3	
			1.62 V		8	
t _{rall,ana}	Port output fall time, port pins with shared analog functions	C _L = 20 pF ⁽⁷⁾	2.2 V		5	ns
	that entered analog farreadile		3.0 V		3	

Packaging

Processor Family	MSP = Mixed-Signal Processor XMS = Experimental Silicon					
Platform	432 = TI's 32-Bit Low-Power Microcontroller Platform					
Series	P = Performance and Low-Power Series					
Feature Set	First Digit 4 = Flash-based devices up to 48 MHz	Second Digit 0 = General purpose	Third Digit 1 = ADC14	Fourth Digit R = 256KB of flash 64KB of SRAM M = 128KB of flash 32KB of SRAM		
Optional: Temperature Range	$S = 0^{\circ}C \text{ to } 50^{\circ}C$ $I = -40^{\circ}C \text{ to } 85^{\circ}C$ $T = -40^{\circ}C \text{ to } 105^{\circ}C$					
Packaging	http://www.ti.com/packaging					
Optional: Distribution Format	T = Small reel R = Large reel No markings = Tube or tray					
Optional: Additional Features	-EP = Enhanced Product (-40°C to 105°C) -HT = Extreme Temperature Parts (-55°C to 150°C) -Q1 = Automotive Q100 Qualified					

- Example
 - Estimate the power used by the processor running out of Flash in active mode (vcore 0) and operating at 3V, 24MHz, 25°C
 - What is the penalty for operating in Vcore 1 mode at this frequency

```
From the graph:
Icc(24MHz, 3v) = 3.5mA
```

 $P = 3v \times 3.5mA = 10.5mW$

From the graph: Icc(24MHz, 3v) = 4.2mA

P = 3v x 4.2mA = 12.6mW 20% penalty

- Example
 - Estimate the power used by the processor running out of Flash in active mode (vcore 0) and operating at 3V, 24MHz, 25°C with 2 Timer32s, a SPI, and the WDT running

From the graph: Icc(24MHz, 3v) = 3.5mA

```
I timers = 2 * 3.5uA/MHz * 24MHz
= 168uA
I spi = 5uA/MHz * 24MHz
= 120uA
I wdt = 6uA/MHz * 24MHz
= 144uA
5.23
0VET FEC
PARAM
I miler A
I miler A
I work = 6uA/MHz * 24MHz
= 144uA
```

5.23 Current Consumption of Digital Peripherals

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)⁽¹⁾

PARAMETER	TEST CONDITIONS	TYP	MAX	UNIT
I _{TIMER_A}	Timer_A configured as PWM timer with 50% duty cycle	5		µA/MHz
I _{TIMER32}	Timer32 enabled	3.5		µA/MHz
IUART	eUSCI_A configured in UART mode	6.5		µA/MHz
I _{SPI}	eUSCI_A configured in SPI master mode	5		µA/MHz
I _{I2C}	eUSCI_B configured in I ² C master mode	5		µA/MHz
I _{WDT_A}	WDT_A configured in interval timer mode	6		µA/MHz
I _{RTC_C}	RTC_C enabled and sourced from 32-kHz LFXT	100		nA
I _{AES256}	AES256 active	19		µA/MHz
I _{CRC32}	CRC32 active	2		µA/MHz

(1) Measured with VCORE = 1.2 V

I total = 3.932mA \rightarrow Ptotal = 11.8mW

- Example
- What output value would a typical output pin pull a 500Ω resister tied to Vcc down to? Assume Vcc=3.0v, T=25°C
 Approximate the current 3V/500Ω = < 6mA

From the graph: near 6ma Slope = (6mA - 0mA) / (.3V - 0V)= 20mA/VIntercept = 6mA - 20mA/V * 0.3V = 0

 $V_{OL} = 3 - I_{OL} * R$ $I_{OL} = 20 \text{mA/V} * V_{OL} + 0$

 $I_{OL} = 20mA/V * (3 - I_{OL} * R)$ $I_{OL} = 5.45mA$

