Last updated 6/17/19

2

- Rectifiers
 - Convert AC to DC
 - Half Wave topology

- Rectifiers
 - Convert AC to DC
 - Full Wave topology

© tj

- Rectifiers
 - Convert AC to DC
 - Full Wave topology positive half cycle

- Rectifiers
 - Convert AC to DC
 - Full Wave topology negative half cycle

- Rectifiers
 - Convert AC to DC
 - Full Wave topology both cycles provide current to the load

- Rectifiers
 - Convert AC to DC
 - Full Wave topology Vpeak (Vpk)

- Rectifiers
 - Convert AC to DC
 - Full Wave topology Vripple

Assume a resistive load R_L

 R_L and C form an RC circuit with time constant $\tau = R_L C$

> $Vout = Vpk \times e^{-t/\tau}$ during the decay time

SO

Vripple $< 2 \times Vpk \times (1 - e^{-T/4\tau})$ where T is the period of the input sine wave

- Rectifiers
 - Example
 - A 100Hz, 8v_{rms} sine wave is rectified using an ideal full wave rectifier. Assuming the load impedance is 1KΩ and the filter capacitor is 100uF:

1) what is the approximate amount of ripple on the output?

 $8v_{rms} \rightarrow 11.3v \text{ peak}$ $100\text{Hz} \rightarrow \text{T}=10\text{ms}$

 $\tau = RC = (100 uF)(1K\Omega) = 100 ms$

Vripple < $2 \times Vpk \times (1 - e^{-T/_{4\tau}})$

Vripple < 2 × 11.3v × (1 – $e^{-10ms/_{4(100ms)}}$) = 558mv

 $Vout_{min} = Vpeak - Vripple = 11.3v - 558mv = 10.74v$

- Unregulated Supply
 - Wall Wart
 - US residential power standards
 - 120vrms +/- 5% → 114vrms 126vrms
 - 60Hz +/- 0.05Hz

- Unregulated Supply
 - Example
 - Desire 12v dc output from a typical wall wart

assume Vd = 0.7v for the diodes \rightarrow need 12v + 1.4v = 13.4v for Vpk allow for 200mv of ripple \rightarrow 13.4v + 0.2v = 13.6v for Vpk Vpk = 13.6v \rightarrow 9.61v_{rms} for the transformer output 9.61vrms \rightarrow 120vrms / 9.61vrms = 12.48 turns ratio for the transformer

Unregulated Supply

This design actually varies from 13.1V at high temp, low load, to 8.7V at low temp, high load 50% variation → need regulation

- Example
 - Desire 12v dc output from a typical wall wart

assume Vd = 0.7v for the diodes \rightarrow need 12v + 1.4v = 13.4v for Vpk allow for 200mv of ripple \rightarrow 13.4v + 0.2v = 13.6v for Vpk Vpk = 13.6v \rightarrow 9.61v_{rms} for the transformer output 9.61vrms \rightarrow 120vrms / 9.61vrms = 12.48 turns ratio for the transformer

Regulated Supply

Need something to control the output voltage over variations of temperature, input voltage and load

- Linear voltage regulator
 - uses active circuitry to maintain the output voltage
 - LDO Low Drop Out versions require minimal overhead voltage

Vreg

Load

Regulated Supply

Need something to control the output voltage over variations of temperature, input voltage and load

- Linear voltage regulator
 - Design the filter cap and transformer to ensure Vminimum is greater than Vreg + V_{DO}
 - The regulator will then maintain the output voltage

Regulated Supply

Need something to control the output voltage over variations of temperature, input voltage and load

• TI LDO Specifications wide input voltage range

wide load current range LM78LXX Electrical Characteristics LM78L05AC / LM78L05I Symbol Max Units Parameter Conditions Min Тур 4.8 5 5.2 Vo Output Voltage $V \le V_{IN} \le 20V$ 5.25 1mA ≤ l_o ≤ 40mA 4.75 v $mA \le I_o \le 70 mA$ 4.75 5.25 1 - 1.5%18 ΔV_o Line Regulation $7V \le V_{IN} \le 20V$ 75 54 $8V \le V_{IN} \le 20V$ 10 Regulation m٧ ΔV_o $1 \text{mA} \le I_{\odot} \le 100 \text{mA}$ 20 60 Load Regulation 5 30 1mA ≤ l_o ≤ 40mA 5 la Quiescent Current 3 Δlo Quiescent Current Change $8V \le V_{IN} \le 20V$ 1.0 mA 1mA ≤ l_o ≤ 40mA 0.1 f = 10 Hz to 100 kHz (2) Output Noise Voltage 40 μV $\Delta V_{IN} / \Delta V_{OUT}$ Ripple Rejection f = 120 Hz 47 62 dB $8V \le V_{IN} \le 16V$ 2VPeak Output Current 140 mA -0.65 mV/°C drop out $\Delta V_{o} / \Delta T$ Average Output Voltage Tempco lo = 5mA VIN (Min) Minimum Value of Input Voltage 7 v 6.7 Required to Maintain Line Regulation voltage θ_{JA} Thermal Resistance 230.9 °C/W (8-Bump micro SMD)

Figure 1. SOIC-8 (D)

(Top View, Narrow Body)

Vreg

CHE

+/- 5% output voltage

Load

Regulated Supply

© tj

EQUIVALENT CIRCUIT

- Regulated Supply
 - Simple Regulator

- Regulated Supply
 - Power Considerations

- With a 12V rectifier output and 50mA load current \rightarrow Psourced = 600mW
- In our example the load only sees 5V and 50mA → Pdissipated = 250mW
- Where does the other power go? → dissipated in the regulator
 - Efficiency = Power provided to the load / total power dissipated In this case Efficiency = 42% Over half the power is lost as heat!

20

Design tradeoff: More ripple \rightarrow lower cost components \rightarrow lower efficiency

© ti

- Supply Decoupling
 - Digital circuits create current spikes on the supply pins
 - Shoot through current
 - Charging and discharging current
 - I/O switching
 - While the average supply current may be a few tens of milliamps, spikes associated with an 8 bit I/O switching can be hundreds of milliamps and a few nanoseconds wide
 - Power supplies and realistic circuit board traces cannot support these current spikes → noise on the supply voltage
 - Supply voltage noise can disrupt the normal operation of the processor or other circuits

- Supply Decoupling
 - Coupling (bypass) capacitors are used to supply these spikes of current, preventing noise on the supply voltage pins

- Supply Decoupling
 - Realistic capacitor model

ABBREVIATION	EXPLANATION	SOURCE AND DETAILS
ESR	Equivalent Series	Wire and connections to the
	Resistance	plate
		Produces heat
ESL	Equivalent Series	Depends on package type
	Inductance	Surface mount better
		Smaller SMD better
RLEAK	Leakage Resistance	Type of dielectric

23

- Supply Decoupling
 - Realistic capacitor model

FIGURE 8. IMPEDANCE OF AN ACTUAL CAPACITOR (NON-IDEAL)

- Supply Decoupling
 - Realistic capacitor model

- Supply Decoupling
 - Most systems use 2 decoupling capacitors
 - 1uF 10uF for low frequency high current spikes
 - .001uF .01uF for high frequency spikes
 - Placed as close to the IC as possible to reduce inductance

