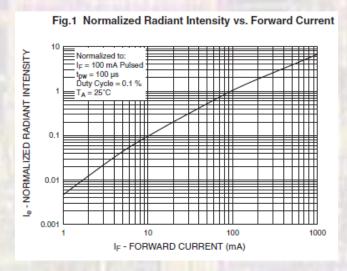
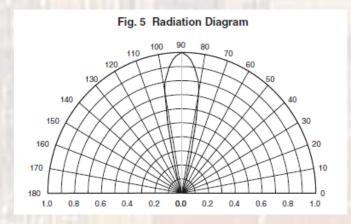
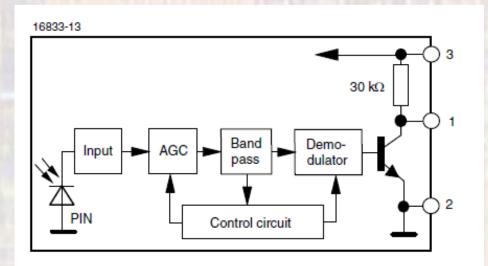
Last updated 11/5/18


- Obstacle detection
 - Want to know if there is something in front of a sensor
 - Two primary non-contact choices
 - Ultrasonic sound
 - Optical light
 - This class uses optical


- Obstacle detection
 - To somewhat limit interference from other sources choose Infrared light (IR)
 - · Commonly used in remote controls for TV, audio, ...
 - Line of sight technology
 - Requires an IR transmitter and receiver

Obstacle detection


- IR transmitter
 - LED which emits in the IR light region
 - Wavelength = 940nm
 - Broad transmit angle limit this with case and slit window
 - More current more light
 - Angle dependent

- Obstacle detection
 - IR receiver
 - Detects IR light
 - Uses signal processing to limit the 'recognized' signal
 - Our detector recognizes 38Kz square waves (carrier frequency)

Obstacle detection

- IR receiver
 - Sensitive to angle
 - Light intensity (mostly on/off why?)
 - Carrier frequency

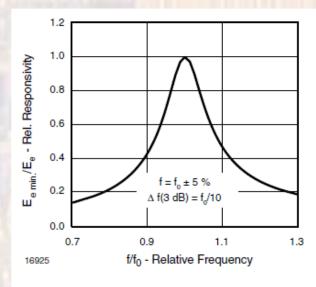
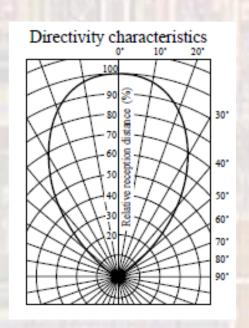



Fig. 5 - Frequency Dependence of Responsivity

- Obstacle detection
 - IR receiver
 - Can use carrier frequency modification to change the relative sensitivity
 - Use this to detect relative distance
 - if detected at 35KHz or 41Khz must be close
 - If only detected at 38KHz must be far

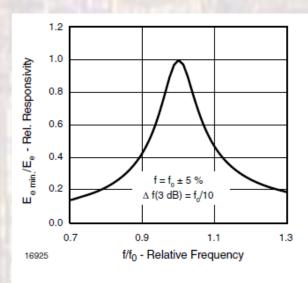
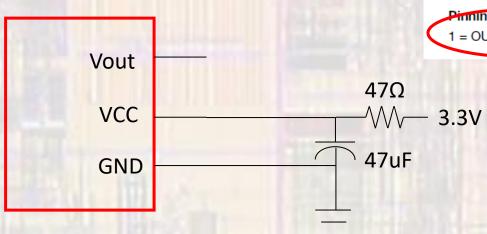
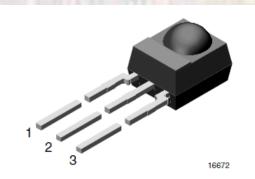
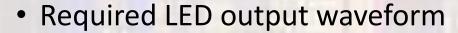
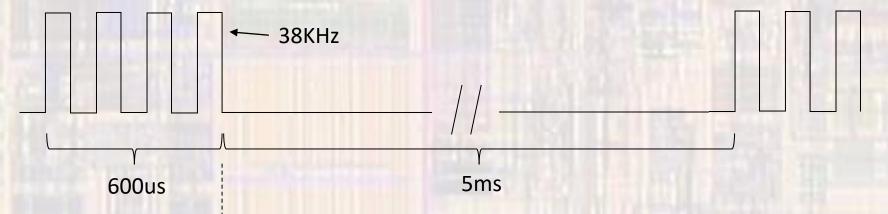




Fig. 5 - Frequency Dependence of Responsivity

- Obstacle detection
 - IR receiver
 - Works best if you filter VCC

MECHANICAL DATA


Pinning for TSOP341.., TSOP343.., TSOP345..:


1 = OUT, 2 = GND, $3 = V_S$

Pinning for TSOP321..., TSOP323..., TSOP325...:

1 = OUT, 2 = V_S, 3 = GND

Obstacle detection

Detector output waveform

Output will only pulse low if it detects the entire waveform

Sample here to ensure detection

EE 2931

- Obstacle detection
 - Notes
 - Too much light can saturate the detector and stop it from working
 - Very sensitive to reflections carefully adjust angles to avoid reflection from the board or tabletop
 - Align the sensor behind the transmitter to maximize the effectiveness of the shield
 - Think about using 2 timers to control the LED output

- Operational Considerations
 - Mechanical sensitivity adjustment
 - Electrical sensitivity adjustment
 - Mono-vision vs. stereo vision