Last updated 12/15/21

- Fundamentals
 - Two types of line sensors
 - Digital
 - Analog
 - Both operate by transmitting an IR beam and measuring how much is reflected back to the sensor

3

• QTR-1RC

- 1) Discharge Capacitor
- 2) Received IR will cause the NPN to conduct
- 3) NPN conduction → charging the capacitor
 → Vout falling

More received IR \rightarrow more conduction \rightarrow faster fall on Vout

NOTE: Vout will eventually fall with just residual IR

Characterize the implementation to determine a threshold value for the fall time to indicate a high reflectance material is under the sensor

• QTR-1RC

• QTR-1RC

Characterize the implementation to determine a threshold value for the fall time to indicate a high reflectance material is under the sensor

- QTR-1RC
 - Tie the output to a digital input pin
 - Use the inherent digital input threshold as the measurement threshold
 - V_{in} detected will transition from 1 to 0 at the threshold voltage

• QTR-1RC

• MSP 432 I/O spec

Table 5-22. Digital Inputs (Applies to Both Normal and High-Drive I/Os)

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

PARAMETER		TEST CONDITIONS	V _{cc}	MIN	TYP MAX	UNIT
V _{IT+}	Positive-going input threshold voltage		2.2 V	0.99	1.65	v
			3 V	1.35	2.25	
V _{IT-}	Negative-going input threshold voltage		2.2 V	0.55	1.21	v
			3 V	0.75	1.65	
V _{hys}	Input voltage hysteresis ($V_{IT+} - V_{IT-}$)		2.2 V	0.32	0.84	v
			3 V	0.4	1.0	

• QTR-1RC

- Characterize the transition time $(1 \rightarrow 0)$ for
 - Different reflectivities (black, white, brown)
 - Different distances
- Select a t_{threshold} between light and dark

- QTR-1RC
 - Operation
 - Pull the output high with a pin
 - Swap the pin to an input
 - Delay for t_{threshold}
 - Check the input pin value
 - If high no line
 - If low line

QTR-1RC output (yellow) when 1/8" above a white/black interface and microcontroller timing of that output (blue).

• QTR-1RC

Light colored CAPACITOR

• QTR-1RC

Optimal sensing distance: 5 mm

Maximum recommended sensing distance: 30 mm

Typical – light delays (high reflectance) – 10s of us dark delays (low reflectance) – ~1ms

Discharge time – 10us

why?

• QTR-1RC

- Operation
 - 3 options for operation
 - Polling
 - Interrupts (timer delay based)
 - Interrupts (pin transition based)

• QTR-1A

- 1) Received IR will cause the NPN to conduct
- 2) NPN conduction → current through resistor
 → Vout drops

More received IR \rightarrow more conduction \rightarrow lower voltage on Vout

Characterize the implementation to determine a threshold value for the output voltage to indicate a high reflectance material is under the sensor

• QTR-1A

Characterize the implementation to determine a threshold value for the output voltage to indicate a high reflectance material is under the sensor

- QTR-1A
 - Tie the output to an A/D input pin
 - Measure the voltage and determine if high or low reflectance is measured (Based on V_{threshold})

Dark colored Resistor

• QTR-1A

Optimal sensing distance: 5 mm

Maximum recommended sensing distance: 30 mm

• QTR-1A

QTR-1A output 1/8" away from a spinning white disk with a black line on it.

QTR-1A output 3/8" away from a spinning white disk with a black line on it.

LIK-TA

- QTR-1A
 - Alternate solution
 - IFF you can get high enough signal
 - Simply tie the output to a digital input pin

Pololu - QTR-1A Reflectance Sensor (2-Pack)

with a black line on it.

QTR-1A output 3/8" away from a spinning white disk with a black line on it.

- QTR-1A
 - Operation
 - 3 options for operation
 - Polling (wait on A/D)
 - Interrupts (A/D conversion complete)
 - Direct digital Input