
Project Management

Last updated 11/28/22

2 © tjEE 2931

Project Management

• Workspace
• Code Composer/Eclipse uses the concept of a workspace

to manage projects

• Create a single workspace
• No Spaces in the path/names

• Located in a place you can find it (outside of the eclipse install)

• I use “workspace_class#_ccstudio
e.g

workspace_ee2931_ccstudio

3 © tjEE 2931

Project Management

• File inclusion
• As a developer who has spent a lot of time developing

code, I might want to allow you to use the functions in my
library without giving you access to source code

• I could give you compiled code, and the linker can include
the compiled code into your final executable code
• But you cannot see the functions and how to use them

• The compiler cannot see the function prototypes and will generate
lots of errors

• To resolve this, I break my code into 2 parts
• Header files – visible to you

• Source files – ultimately these are compiled and unreadable by you

4 © tjEE 2931

Project Management

• .c files and .h files
• .c files are used to store C code
• Project code

• Library code (collected functions)

• .h files are used to store prototypes and constants
• Function prototypes

• Constants

5 © tjEE 2931

Project Management

• General software development process
• Develop code using libraries from other sources along

with your code

• The owners of the libraries want you to be able to use the
functions in the library but may not want you to be able to
see the implementation
• Provide x.h files with the prototypes (declarations) of all the

functions
• Allows you to see the format and documentation of the functions

• Allows your code to compile without the actual x.c files

• Provide a compiled version of the code (xx.lib)

• Your code #includes the library x.h file

6 © tjEE 2931

Project Management

• General software development process
• When you ‘build’ your project
• All of the non-excluded .c files in the project get compiled
• This is why you can only have one file with a main function

• The included x.h files allow the compiler to know what functions are
coming from elsewhere

• Compile → assemble →machine code (10110100101010)

• The Linker then arranges all the compiled functions from all the .c
files along with any pre-compiled libraries so they can be used in
your program
• Creates a single executable file

7 © tjEE 2931

Project Management

• Header Files
• xxxx.h

• Store prototypes and constants
• Constants
• Pin / Bit numbers and names (msp.h)

• Structure definitions

• Enumerated types

• Function declarations (prototypes)

• Wrapped in an “include guard” to prevent including the code
multiple times

8 © tjEE 2931

Project Management

• Header File - Include guard
• Prevents the same code from being included multiple

times

#ifndef MYFILENAME_H

#define MYFILENAME_H

…

declarations

…

#endif

Check to see if the constant MYFILENAME_H
has not been defined – #ifndef

If it is not defined,
create the constant - #define
execute the commands between #define

and #endif

If it has been defined
skip to #endif

All caps used for the constant
Based on .h file name with dot replaced by _

Constant is not initialized or set

9 © tjEE 2931

Project Management

• Header File - Inclusion
• Header files are #included into the .c file using the module

• Optionally they can be included into the related module .c
file

Note – c system header files are
enclosed in angled brackets < >

user defined header files are
enclosed in double quotes “ “

10 © tjEE 2931

Project Management

• Header File – Inclusion
• Sumo bot example

Project Files Top level program
battleF.c

11 © tjEE 2931

Project Management

• Build
• Sumo bot example – compile/assemble

Top level program
battleF.c

Prototypes for all the functions in these files
are read in and the compiler can compile and
assemble your top-level code – without knowing
the specific implementation of the functions

12 © tjEE 2931

Project Management

• Build
• Sumo bot example – compile/assemble

Project Files

Each of the non-excluded .c files is
compiled independently
(including your top level)

13 © tjEE 2931

Project Management

• Build
• Sumo bot example - linker

The machine code from each compiled/assembled
.c file is combined along with the compiled/assembled
code from standard libraries and MSOE_LIB to create
an executable file

Note: The MSOE_LIB includes readable .c files. These files are not
the files used during build. I have already compiled/assembled the
MSOE_LIB files and included them in the distribution (zip file) under
the Debug directory

When you add Debug/MSOE_LIB.lib to your linker path during library
installation, you point the linker to the already compiled/assembled
MSOE_LIB files

14 © tjEE 2931

Project Management

• Header File – Inclusion
• Sumo bot example

IR .h file

IR .c file

…

/*
* ir.c
*
* Created on: Dec 28, 2017
* Author: johnsontimoj
*/

#include "msp432.h"
#include "msoe_lib_all.h"
#include <stdio.h>
#include "ir.h"

////////////////////////////////////
//
// IR sensor routines
//
// 1) IR_setup
// Sets up the pins for the IR rx/tx
// Sets up the 38KHz PWM signal - TimerA3
// Sets up the PWM envelope signal - TimerA2
//
// 2) check_IR

void ir_setup(void){
//
// setup pins
//
// tx outputs P10.5
P10->SEL0 |= 0x20;
P10->SEL1 &= ~0x20;
P10->DIR |= 0x20;

/*
* ir.h
*
* Created on: Jan 17, 2018
* Author: Tim
*/

#ifndef IR_H_
#define IR_H_

//////////////////////////////////////
//
// IR_setup()
// Sets up the pins for the IR rx/tx
// Uses 2 IR transmitters and 2 IR receivers
//
// Transmitters are IR diodes and require one pin each
// L tx - P10.5
// R tx - P10.5 - common output
//
// Sensors require Vcc, gnd, and 1 output
// L rx - P10.2
// R rx - P10.3
//
//////////////////////////////////////
void ir_setup(void);

//////////////////////////////////////
//
// check_ir(l_ptr, r_ptr)
// modifies the pointers based on sensor output values
//
//////////////////////////////////////
void check_ir(int * left, int * right);

#endif /* IR_H_ */

15 © tjEE 2931

Project Management

• Project Build
• The IDE (Code Composer /Eclipse)
• Includes all the files “included” in the top level file (the one

containing main), and all files “included” in those files
• This gives the compiler a complete set of function/object prototypes

• Compiles all the .c files in the project that have not been excluded
from the build

• Builds the overall solution

Excluded
From
Build

included

compiled

