
Algorithmic State 
Machine Charts

Last updated 5/18/20



2 © tjEE 3921

ASM Charts

These slides review the basics of Algorithmic State 
Machine (ASM) diagrams

Upon completion: You should be able to create your 
own ASM diagram for a variety of applications



3 © tjEE 3921

ASM Charts

• Algorithmic State Machine Chart (ASM)

• Alternative representation to a State Diagram

out1 <= 1011
out2 <= 1

in1 = 1

out3  1001

unconditional output box
(Moore output)

state
name

Decision
T F

conditional output box
(Mealy output)



4 © tjEE 3921

ASM Charts

• Algorithmic State Machine Chart (ASM)

out1 <= 1011
out2 <= 1

in1 = 1

out3  1001

state
name

T F

state entry

exit to next stateexit to next state

Rules:
Only one input path
Only one valid output path
No internal feedback



5 © tjEE 3921

ASM Charts

• Algorithmic State Machine Chart (ASM)

outA 101

in2 = 0

out3  1

in1 = 1

out4  0

s6

outA 101

in1 = 1

out4  0

in2 = 0

out3  1

TT

T

T

FF
F

F

s6



6 © tjEE 3921

ASM Charts

• Edge Detector

• Rising edge

zero

tick = 0

edge

tick = 1

1

0

one

tick = 0

1

0

1

0



7 © tjEE 3921

ASM Charts

• Edge Detector

zero

tick = 0

edge

tick = 1

1

0

one

tick = 0

1

0

1

0

tick  0

in = 1

in = 1

T

T

F

F

zero

tick  1

in = 1
T

tick  0

edge

one

F



8 © tjEE 3921

ASM Charts

• Edge Detector process(all)
begin

case state is
when zero =>

tick <= ‘0’;
if in= ‘1’ then

state_next <= edge;
else

state_next <= zero;
end if;

when edge =>
tick <= ‘1’;
if in= ‘1’ then

state_next <= one;
else

state_next <= zero;
end if;

when one =>
tick <= ‘0’;
if in= ‘1’ then

state_next <= one;
else

state_next <= zero;
end if;

end case;



9 © tjEE 3921

ASM Charts

• Edge Detector
-- Next state logic

process(all)
begin

case state is
when zero =>

if in= ‘1’ then
state_next <= edge;

else
state_next <= zero;

end if;
when edge =>

if in= ‘1’ then
state_next <= one;

else
state_next <= zero;

end if;
when one =>

if in= ‘1’ then
state_next <= one;

else
state_next <= zero;

end if;
end case;

-- Output logic

process(all)
begin

case state is
when zero =>

tick <= ‘0’;
when edge =>

tick <= ‘1’;
when one =>

tick <= ‘0’;
end case;


