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ASM Charts

These slides review the basics of Algorithmic State 
Machine (ASM) diagrams

Upon completion: You should be able to create your 
own ASM diagram for a variety of applications
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ASM Charts

• Algorithmic State Machine Chart (ASM)

• Alternative representation to a State Diagram
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ASM Charts

• Algorithmic State Machine Chart (ASM)

out1 <= 1011
out2 <= 1

in1 = 1

out3  1001

state
name

T F

state entry

exit to next stateexit to next state

Rules:
Only one input path
Only one valid output path
No internal feedback
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ASM Charts

• Algorithmic State Machine Chart (ASM)
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ASM Charts

• Edge Detector

• Rising edge
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ASM Charts

• Edge Detector
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ASM Charts

• Edge Detector process(all)
begin

case state is
when zero =>

tick <= ‘0’;
if in= ‘1’ then

state_next <= edge;
else

state_next <= zero;
end if;

when edge =>
tick <= ‘1’;
if in= ‘1’ then

state_next <= one;
else

state_next <= zero;
end if;

when one =>
tick <= ‘0’;
if in= ‘1’ then

state_next <= one;
else

state_next <= zero;
end if;

end case;
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ASM Charts

• Edge Detector
-- Next state logic

process(all)
begin

case state is
when zero =>

if in= ‘1’ then
state_next <= edge;

else
state_next <= zero;

end if;
when edge =>

if in= ‘1’ then
state_next <= one;

else
state_next <= zero;

end if;
when one =>

if in= ‘1’ then
state_next <= one;

else
state_next <= zero;

end if;
end case;

-- Output logic

process(all)
begin

case state is
when zero =>

tick <= ‘0’;
when edge =>

tick <= ‘1’;
when one =>

tick <= ‘0’;
end case;


