# EE 3921 Lab 2: FSM/FSMD

## 1 dedicated lab period, 2 lab periods to complete

## Name:

## Objectives

- Review FSM and FSMD concepts
- Utilize the switches and seven segment displays

| Prelab                                                        | student<br>check off |
|---------------------------------------------------------------|----------------------|
| Review the SSEG display info from CE1911                      |                      |
| Review the FSM and FSMD class notes                           |                      |
| <ul> <li>Review the Development process from Lab 1</li> </ul> |                      |

## Assignment

Part 1: Create a controller for a simple Elevator

Specifications:

- 1) The number of floors is specified via a generic: NUM\_FLOORS (must work for ANY positive value)
- If a "desired\_floor" value above the maximum is input the elevator should go to the top floor
- 3) No negative floor numbers (starts at 1)
- 4) If the wait time on a floor exceeds the DELAY\_CNT(generic) clks, automatically return to floor 1
- 5) If the "desired\_floor" input changes while in transit, the new "desired floor" value will take effect immediately
- 6) If the "desired\_floor" input changes while returning to floor 1 automatically, the new "desired\_floor" input will be ignored until floor 1 is reached
- 7) Generics:
  - a. NUM\_FLOORS
  - b. DELAY\_CNT
- 8) Input signals:
  - a. rstb
  - b. clk
  - c. desired\_floor (? bits)
- 9) Output signals:
  - a. Desired floor displayed on SSEGs in hex (assume no more than 255 floors for this part only)
  - b. Current floor displayed on SSEGs in hex (assume no more than 255 floors for this part only)
  - c. LED indicating desired floor has been reached

Additional Requirements:

- 1) Implementation must be via an FSM
- 2) A separate binary\_to\_sseg\_hex block must be implemented and instantiated in the DE10 implementation
- 3) Run simulation(s) to verify operation (see following for the required sequence)
- 4) Create a DE10 implementation of your design
  - a) Provide support for 60 floors (NUM\_FLOORS)
  - b) Set the DELAY\_CNT generic to 10
  - c) SW0 resets to floor 1
  - d) SW1 SW6 indicate the desired floor in binary

- e) LED0 indicates desired floor reached
- f) Desired floor displayed on SSEGs 5/4 in hex
- g) Current floor displayed on SSEGs 1/0 in hex

#### Part 2: Create a GCD calculator block

#### Specifications:

#### 1) Calculated the GCD of two numbers

- 2) Input numbers are n-bit binary
- 3) Inputs:
  - <del>a. rstb</del>
  - <del>b. start</del>
  - c.—number\_1 (n bits)
  - d. number\_2 n bits)
- 4) Outputs:
  - a.—Input number\_1 in binary
  - b.--Input number\_2 in binary
  - c. complete
  - d. GCD result in binary
- Additional Requirements:
  - 1) Implementation must utilize the process described below
  - 2) Implementation must be via an FSMD
  - 3) The design must be broken into 3 parts: FSM, Data Path, FSMD
  - 4)—A separate binary\_to\_sseg\_hex block must be implemented and instantiated in the DE10 implementation
  - 5) A separate binary\_to\_sseg\_decimal block must be implemented and instantiated in the DE10 implementation

80%

- 6) Run simulation(s) to verify operation (see following for the required sequence)
- 7) Create a DE10 implementation of your design
  - <del>a) N = 4</del>
  - b) SW0 for reset
  - c) KEYO for start
  - d)—SW5-2 for number 1 in binary
  - e) SW9-6 for number 2 in binary
  - f) LED(5) for complete
  - g) SSEG 0/1s for number 1/2 in hex
  - h) SSEG 4/5 for the result in DECIMAL

## **Check Off**

#### You must demonstrate your working design(s) prior to the end of the 2nd lab period

- Demo the Elevator FSM (Simulation, DE10)
- Demo the GCD block (Simulation, DE10)
   40%

## Lab Report (informal)

- Due at 4:00 pm, 1 day after 2<sup>nd</sup> lab in the box
- Include a properly documented informal lab report. 20% \_\_\_\_\_\_

# **Elevator Simulation**

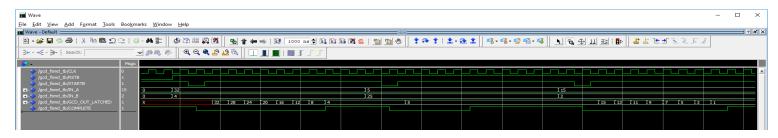
NUM\_FLOORS = 60, DELAY\_CNT = 10 Up to 18

Change to 12 part way (should change)

Down to 6

Wait long enough for an automatic return

Attempt to change during return (should not change)


Attempt to go to 63 (should stop at 60)



# GCD Algorithm – using only subtraction

gcd(a, b) if a == b return a if a > b gcd(a - b, b) else gcd(a, b - a)

Note: the recursion is accomplished by going through the datapath again



For DE10 – use (N = 4) 15 and 3 5 and 12 14 and 14