NIOS Peripherals Parallel I/O

Last updated 8/20/20

These slides describe the Parallel I/O (PIO) peripheral for the NIOS system

Upon completion: You should be able implement the PIO IP in a NIOS system

- Parallel IOs (PIO)
 - Each PIO can support up to 32 I/O ports
 - Multiple PIOs can be instantiated
 - Communication to/from the PIOs is via the Altera System Fabric

EE 3921 3

- Parallel IOs (PIO)
 - Connections can be on chip or off chip

FPGA

- Parallel IOs (PIO)
 - 4 user visible registers
 - Data
 - Direction
 - Interrupt Mask
 - Edge Capture
 - System interface
 - Avalon Memory Mapped Slave Port
 - Address
 - Data
 - Control
 - Interrupt output

- Parallel IOs (PIO)
 - Basic Settings
 - Width
 - Direction
 - Reset value for outputs

NIOS Peripherals – Para

- Parallel IOs (PIO)
 - Bidir
 - Single pin for each bit
 - Direction set by the direction register
 - Tri-state by making the pin an input
 - Input
 - Input only
 - InOut
 - Separate busses for input and output
 - · Each bus is unidirectional
 - Output
 - Output drive only

- Parallel IOs (PIO)
 - Output Register
 - Enables setting or clearing individual bits
 - Implements 2 additional n bit registers
 - outclear
 - outset

Output Register

Enable individual bit setting/clearing

- Parallel IOs (PIO)
 - Edge capture
 - Detects and flags a pin event
 - Select Synchronously capture to enable
 - Implements an additional n bit register
 - edgecapture
 - Essentially an interrupt flag register
 - Capture on rising / falling / any edge
 - Enable bit clearing to enable clearing the edgecapture register
 - Write a 1 to the bit you want to clear
 - IF DISABLED writing to any bit in the register clears all the bits

Parallel IOs (PIO)

▼ Interrupt

☑ Generate IRQ

IRQ Type: LEVEL ✓

Level: Interrupt CPU when any unmasked I/O pin is logic true

Edge: Interrupt CPU when any unmasked bit in the edge-capture register is logic true. Available when synchronous capture is enabled

- Interrupt
 - Level
 - creates an interrupt signal when the pin is high
 - Edge
 - creates an interrupt when the edgecapture flag is 1

10

Parallel IOs (PIO)

- Test bench wiring
 - Provide input values for simulation

- Parallel IOs (PIO)
 - Software file
 - altera_avalon_pio_regs.h
 - defines register map
 - defines constants

Parallel IOs (PIO)

Register Map

Table 11-2: Register Map for the PIO Core

Offset	Reg	ister Name	R/W	(n-1)		2	1	0
0	data	read access	R	Data value currently on PIO inputs				
		write access	W	New valu	New value to drive on PIO outputs			
1	direction (1)		R/W	Individual direction control for each I/O port. A value of 0 sets the direction to input; 1 sets the direction to output.				
2	interruptmask (1)		R/W	IRQ enable/disable for each input port. Setting a bit to 1 enables interrupts for the corresponding port.				
3	edgecapture (1), (2)		R/W	Edge det	Edge detection for each input port.			
4	outset		W	Outset va register i	Specifies which bit of the output port to set. Outset value is not stored into a physical register in the IP core. Hence it's value is not reserve for future use.			
5	outclear		W	value is r	Specifies which output bit to clear. Outclear value is not stored into a physical register in the IP core. Hence it's value is not reserve for future use.			

only exist in certain modes

- Parallel IOs (PIO)
 - Data Register
 - Read input → provides input value
 - Read output -> provides value on output
 - Read bidir → if output provides value on output if input – provides input value
 - Read inout -> provides input value
 - Write input → no effect
 - Write output → generates output signal

- Parallel IOs (PIO)
 - Direction Register
 - sets the direction of the pins in a bidir port
 - 0 → input
 - 1 → output
 - Only exists in bidir mode
 - reading it in any other mode is undefined
 - On reset all pins are set to input (high Z)

- Parallel IOs (PIO)
 - Interrupt Mask Register
 - Enables interrupts on individual pins
 - 0 → disabled
 - 1 → enabled
 - Only exists if interrupt is enabled
 - On reset all pins bits are set to 0 not enabled

- Parallel IOs (PIO)
 - Edge Capture Register
 - Bit n is set on appropriate event on pin n
 - once set must be cleared to detect another event
 - enable bit clearing → clear individual bits (flags) via the write to edge capture register
 - no enable bit clearing → all bits (flags) cleared via write to edge capture register
 - Only exists if edge capture is enabled

- Parallel IOs (PIO)
 - outset / outclear Register
 - set bit in outset to set the pin (outputs only)
 - set bit in outclear to clear the pin (outputs only)
 - Not registered so must maintain signal to maintain state

altera_avalon_pio_regs.h

```
#define IOADDR ALTERA AVALON PIO DATA(base)
                                                      IO CALC ADDRESS NATIVE(base, 0)
#define IORD ALTERA AVALON PIO DATA(base)
                                                      IORD(base, 0)
#define IOWR ALTERA AVALON PIO DATA(base, data)
                                                      IOWR (base, 0, data)
#define IOADDR_ALTERA_AVALON_PIO_DIRECTION(base)
                                                      IO CALC ADDRESS NATIVE(base, 1)
#define IORD ALTERA AVALON PIO DIRECTION(base)
                                                      IORD(base, 1)
#define IOWR ALTERA AVALON PIO DIRECTION(base, data) IOWR(base, 1, data)
#define IOADDR ALTERA AVALON PIO IRQ MASK(base)
                                                      IO CALC ADDRESS NATIVE (base, 2)
#define IORD ALTERA AVALON PIO IRQ MASK(base)
                                                      IORD(base, 2)
#define IOWR ALTERA AVALON PIO IRQ MASK(base, data)
                                                      IOWR (base, 2, data)
                                                      __IO_CALC_ADDRESS_NATIVE(base, 3)
#define IOADDR ALTERA AVALON PIO EDGE CAP(base)
#define IORD ALTERA AVALON PIO EDGE CAP(base)
                                                      IORD(base, 3)
#define IOWR ALTERA AVALON PIO EDGE CAP(base, data)
                                                      IOWR (base, 3, data)
#define IOADDR ALTERA AVALON PIO SET BIT(base)
                                                     IO CALC ADDRESS NATIVE (base, 4)
#define IORD ALTERA AVALON PIO SET BITS(base)
                                                     IORD(base, 4)
#define IOWR ALTERA AVALON PIO SET BITS(base, data) IOWR(base, 4, data)
#define IOADDR ALTERA AVALON PIO CLEAR BITS(base)
                                                        IO CALC ADDRESS NATIVE (base, 5)
#define IORD ALTERA AVALON PIO CLEAR BITS(base)
                                                      IORD(base, 5)
#define IOWR ALTERA AVALON PIO CLEAR BITS(base, data) IOWR(base, 5, data)
/* Defintions for direction-register operation with bi-directional PIOs */
#define ALTERA AVALON_PIO_DIRECTION_INPUT 0
#define ALTERA AVALON PIO DIRECTION OUTPUT 1
```