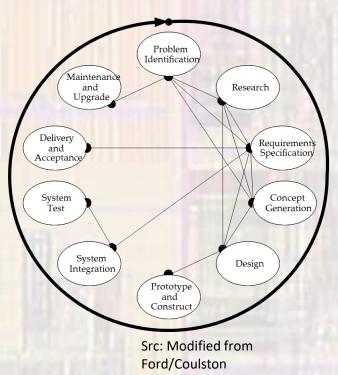

System Design Process

Last updated 7/6/20


These slides outline the generalized design process used in most system designs. A system can range from a simple circuit to an entire mobile communications system

Upon completion: You should be able to describe each step of the generalized design process

Generalized Design Process

- Generalized Design Process
 - Each element informs and feeds back to every other element
 - Must constantly ask: "how does the decision I am about to make impact my prior assumptions and future decisions".

Problem Identification

- In most cases you will be given the problem to solve
- It is critical to test this problem identification
 - Do you understand the problem
 - Is it the fundamental problem or an already half solved problem
 - Is it well defined, but not over defined

- Research
 - Understand the underlying principles of the problem
 - Review current solutions
 - Look for gaps and opportunities to innovate
 - Become a subject matter expert

- Requirements Specification
 - Identify what the system must do to solve the problem
 - Over specify:
 - Higher cost
 - Longer development time
 - Under specify
 - Don't solve problem
 - Customer does not accept the solution
 - No design solutions should be assumed at this stage
 - Maximize the design space

- Concept Generation
 - Multiple design solutions are conceived
 - Initially these can be wildly creative
 - Each design solution is explored far enough to allow it to be compared to:
 - Requirements
 - Other possible design solutions
 - Typically only one design solution emerges from this phase

- Design
 - Hierarchical system design
 - Up/Down sub-system design
 - Detailed block, module, circuit, and software design
 - Heavy reliance on models and simulation tools
 - Tight feedback with prototyping phase

- Prototyping and Construction
 - Used to inform the design process
 - Prototype small elements of the design in very tight loops
 - Prototype larger elements of the design at critical development points
 - For long lead time elements (e.g. Integrated Circuits) it is critical to make the right decisions on prototyping
 - More design time → less time to correct errors found in prototyping
 - Early prototyping → more errors → higher chance of errors in the fixes

- System Integration
 - Pull everything together
 - Happens at multiple levels of the design hierarchy
 - Highlights specification errors (between sub-systems)
 - Highlights communications errors (between teams)

- System Test
 - Test everything together
 - Happens at multiple levels of the design hierarchy
 - Validates the system to the original Requirements Specifications
 - → does it solve the original problem

- Delivery and Acceptance
 - In situ testing
 - Validate the solution
 - Uncover unexpected interdependencies
 - Frequently require "tweeks" to the solution or the system

- Manufacturing
 - Determine manufacturability
 - Component robustness
 - Overall system yield
 - Complexity